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Abstract

Different processing methods significantly affdot tontent of bioactivities and
the anti-oxidant activities in food sources, inchgdblack rice, one of the world’s
major food sources of black rice anthocyanin extfBRAE). In this study, the effect
of drum-drying and extrusion processes on lipopdgkaride (LPS)-induced
inflammatory responses by bioactive compounds amtbxadants from black rice
extract was determined. This study identified tbé&alt phenolic, flavonoid, and
anthocyanin contents and antioxidant activities vitro. The phytochemical
constituent analysis of three anthocyanin-enricleedracts from raw (BRAE),
drum-dried (D-BRAE), and extruded black rice (E-BRA using
UPLC-LTQ-Orbitrap-MS/MS tentatively identified nine compounds.
Cyanidin-3-glucoside was the major anthocyanin lack rice extracts. In contrast,
significant reduced levels of cyanidin-3-glucosided peonidin-3-glucoside were
found in D-BRAE and E-BRAE, and the content of paattechuic acid was increased
obviously in E-BRAE. The anti-inflammatory effecté differently processed rice
extracts in LPS-stimulated RAW?264.7 cells demomsttdhat BRAE, D-BRAE, and
E-BRAE (400ug/mL) significantly inhibited NO and PGE2 secreti(px0.001) by
down-regulating INOS and COX-2 mRNA and protein reggion levels. mRNA
expression of pro-inflammatory cytokines (TNF-IL-6 and IL-13) were also
decreased by BRAE, D-BRAE, and E-BRAE. Therefotee wanti-inflammatory
activities of BRAE were not affected by drum-dri@dextrusion process. Activation

of MAPK and NF«xB pathways were inhibited by BRAE that influencdak t
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regulation of the phosphorylation of JNK, ERK, p&hd kBa. These pathways were
not affected by the drum-dried process but weraifsogntly enhanced by the
extrusion process. This study will provide scieatdéind meaningful basics for the
application of BRAE using different processing noeth in anti-oxidant and

anti-inflammation.

Keywords. black rice, drum-drying, extrusion, UPLC-LTQ-Oraip-MS/MS,

anti-inflammatory activity
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1. Introduction

Inflammation is a series of defense-based immusporeses that are produced
by the body in response to various stimuli. Exaessnflammatory reactions may
lead to diabetes, insulin resistance, and cardamasand metabolic diseases (Liu, et
al.,, 2019). Several drugs have been approved fertbatment of inflammatory
patients, such as aminosalicylates, corticosteroatgibiotics, and non-steroidal
anti-inflammatory drugs (NSAIDs). However, the letegm and high-dose usage of
these drugs may cause side effects such as gasstimal or renal damage (Montoya,
et al.,, 2019; Rainsford, 2003). Therefore, natwsabstances have been widely
investigated for anti-inflammatory treatment. Sasdhave shown that daily dietary
intake of fruits, vegetables and grains could pnéweflammation and other chronic
diseases caused by inflammation (Lee, et al., 20ibmrakul, et al., 2015; Peng, et al.,

2019; Teng, et al., 2017; Zhang, et al., 2019a).

Grains play important roles in daily dietary suppéntation and possess various
biological functions including anti-inflammatory @rantioxidant activities, et al.
Zhang et al., (2019b) found that colored maize @hanin-rich extracts restored
inflammation-mediated  oxidative  stress and  insulinresistance  in
macrophage-conditioned media-treated adipocyteag&ocet al., (2017) reported that
whole grain diet reduced body weight and systerow-grade inflammation when
compared with refined grain diet. Wu et al., (20190)nd that the anthocyanin in
black rice, black soybean, and purple corn coul@lerate diet-induced obesity by

alleviating both oxidative stress and inflammatioi©57BL/6 mice fed a high-fat diet.
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Black rice is a special rice cultivar mainly culited in Southeast Asia, having a
higher phenolic and anthocyanin contents than itemice. Previous investigations
have shown that cyanidin-3-O-glucoside and peoridi-glucoside are the major
anthocyanins in black rice (Hao, et al., 2015; Rataal., 2018; Zhu, et al., 2018a).
Several studies have reported that black rice agtrn extracts possess antioxidants,
and anti-inflammatory activities, botm vitro and in vivo (Pang, et al., 2018;
Sangkitikomol, et al., 2010; Sirilun, et al., 2018y, et al., 2017). Zhao et al., (2018)
reported that dietary black rice anthocyanin-risfiraect and rosmarinic acid, alone
and in combination, alleviated the symptoms ofamfination in mice with dextran
sulphate sodium salt (DSS)-induced colitis.. Strefyorted by Limtrakul et al., (2015)
demonstrated that black rice anthocyanin extracppressed LPS-induced
inflammation by inhibiting the activation of the tmgen-activated protein kinases
(MAPK) signaling pathway and nuclear factor (N&B- translocation, thereby
indicating that black rice anthocyanin extracts ikihtherapeutic potential in
inflammation-related diseases. With the accelegatirythm of life, the consumption
of whole grain fast food for health benefits isrgag considerable attention by the
people. However, these processes may affect tlaetdie compounds content and the
functional activities of grains. Surh et al., (2DX¥éported on a significant loss of
anthocyanin in black rice during roasting (94%gashing (88%), pan-frying (86%)
and boiling (77%), while the phenolic compound emit and
1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scagerg activity decreased

drastically after cooking. Bhawamai et al., (20if6und that thermal cooking
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decreased the total anthocyanin and cyanidin-3egide (C3G) contents and the
Ferric ion reducing antioxidant power (FRAP) antiative capacity, but did not
affect the anti-inflammatory activity of black ric&lthough several studies have
reported the effect of cooking on the polyphengliesithocyanin content, and
antioxidative activity of black rice, limited dats available regarding the changes in
bioactive compounds and biological activities oddi rice by other food-related

processing methods, for example, drum-drying artdision.

Drum drying and extrusion are two important progegsnethods in the food
industry (Henriquez, et al., 2013). Extrusion is mmportant food processing
technology that is widely used for ready-to-eatakfast cereals, puffed food, and
other snack foods. It was demonstrated that theu@sdl process would lead to the
gelatinization of starch, the protein denaturatimmg heat-sensitive components such
as vitamins and antioxidant degradation (Ruiz-Grdi& et al., 2015). A previous
study reported that the extrusion cooking treatmenteased the total phenolic
content (TPC) and antioxidant activities of greeandna flour (Sarawong, et al.,
2014). The total phenolics, anthocyanins, and amtamt activity in black rice bran
were increased by extrusion but decreased in palisind brown rice (Ti, et al., 2015).
Additionally, drum drying is an economical techrpfowith high drying efficiency
commonly used in grain-based baby foods, potatpscland fruit slices (Henriquez,
et al., 2013). Soison et al., (2014) reported thatn-dried purple-flesh sweet potato
flours achieved the maximum phenolic content andiomilant activities with

drum-dried temperature at 140 °C. The thermal dkgran of anthocyanin and
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phenolics in grains has been studied, and it waw/shhat their functional activities
could consequently be affected. Leem et al., (2DXélnd that Acanthopanax
senticosus leaves (ASL) decreas@RNA expression of anti-inflammatory cytokines
and protein levels in HMC-1 cells, reduced nitrigid® (NO); malondialdehyde
(MDA); and tumor necrosis facter{TNF-0) levels in acute inflammatory rats, and
extrusion treatment increased the anti-inflammatefiects of ASL. Montoya-
Rodriguez et al., (2014) found that extrusion psscdéreatment improved the
anti-inflammatory effect of amaranth pepsin/panttnea hydrolysates in
LPS-stimulated human THP-1 macrophage-like and m&/AN 264.7 macrophages
by decreasing TNle; NO, and Prostaglandin E2 (PGE?2) secretion anititivig the
phosphorylation of NkeB signaling pathway. However, research on the eftdc
extrusion and drum-drying on black rice extractsytpbhemical contents,

anti-inflammatory activity, and underlying mechaniss limited.

The aim of the present study was to investigateeffects of drum-drying and
extrusion on the chemical constituents, and ardemti and anti-inflammatory
activities of black rice extracts. The chemical stitnents of black rice extracts were
identified by UPLC-LTQ-Orbitrap-MS/MS techniques)dathe antioxidant activities
were determined by DPPH, ABTS, and FRAP assays. ifliitory activities of
inflammatory mediators (NO, PGE2) and pro-inflamongatcytokines (TNFe, IL-6,
IL-1B) were investigated using ELISA kits, while the m/RNexpression of
pro-inflammatory cytokines and inflammation-relatzymes (iNOS, COX-2) were

determined by RT-gPCR. The effect of black ricerats on NFR<B and MAPK



118 signaling pathways were investigated by westertttibtp The results obtained from
119 this study can provide scientific evidence for fireduction of cereal convenience

120 foods and human daily dietary intake.

121 2. Materialsand methods

122 2.1. Chemicals

123 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazatiu bromide (MTT) and LPS
124  (Escherichia coli 055: B5) were purchased from Sighidrich (St. Louis, USA). NO
125 assay kits were obtained from Beyotime Biotechnplo@Ghanghai, China).
126  prostaglandin E2 (PGE2), TNk- IL-6, IL-1B ELISA kits was purchased from
127 Meimian Biotech (Yancheng, China). The JNK, phosphdK (p-JNK), p38,
128 phosphor-p38 (p-p38), ERK, phosphor-ERK (p-ERK)5,pfhosphor-p65 (p-p65),
129 IkBa, phosphor#Ba (p-lkBa) primary antibodies for western blot were obtained

130 from Cell Signaling Technology, Inc. (Beverly, MASA).

131 2.2. Sample preparation

132 The raw, drum-dried, and extruded black rice powdeere obtained from
133 JiangXi Guwuyuan Food Co., Ltd (JiangXi, China).eTanthocyanin-rich fraction
134  extraction of black rice was performed as followisick rice powder (2 g) was mixed
135 with 40 mL 0.1% HCI (v/v) in 80% methanol and inetéd at & for 12 h in the
136  dark. The mixture was centrifuged at 4500xg foriB.fifihe residue was re-extracted,
137 and the supernatants were collected, evaporate8@t, and dissolved in an aliquot

138  of methanol. The sample was then purified using€3d$LB 6cc (200mg) Extraction



139 Cartridges (WATERS, USA) and freeze-dried, stored—80°C until use. All

140 procedures were performed in the dark to avoid aoydnin degradation. The
141 obtained freeze-dried black rice extract powder waamed black rice
142  anthocyanin-rich extract (BRAE)., Prefix letters reveused to distinguish the two
143 processing BRAEs as the drum-dried BRAE (D-BRAE}Y dahe extruded BRAE

144 (E-BRAE).

145  2.3. Total phenolic, flavonoid and anthocyanin contents

146 The total phenolic content (TPC) of BRAEs was measuusing the
147  Folin-Ciocalteu method (Tet al., 2015). TPC was expressed as milligram dticga
148 acid equivalent per gram dry weight extract (mg GABW) using the gallic acid
149 calibration curve. The total flavonoid content (TlF&¥ BRAEs were carried out by
150 NaNO,-AICI; method using catechin as a standard. The TFC wpeessed as
151 milligram of catechin equivalent in gram of dry gki (mg CAE/g DW). The total
152  anthocyanin content (TAC) of BRAEs was determingdhe pH differential method
153 (Ti, et al., 2015). The TAC was expressed as milligrarhg€yanidin-3-glucoside
154 equivalent per gram of dry weight (mg C3G/100 g DWI) samples analyzed in

155 triplicate.

156  2.4. Qualitative and quantitative analysis

157  2.4.1 Liquid chromatographic and mass spectrometric conditions

158 The UPLC-LTQ-Orbitrap-M$ consisted of a heated-electrospray ionization

159 probe (HESI-II; Thermo Fisher Scientific, USA) egped with an ACQUITY UPLC
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C18 column (2.X100 mm, 1.7um). The mobile phase consisted of 0.1% formic acid
in deionized water (A) and 0.1% formic acid in acetrile (B). The gradient elution
program was as follows: 0—2 min, 5% B; 2—-11 min-8%% B; 11-13 min, 43%-70%
B; 13-17 min, 70% B; 17-26 min, 70%-100% B; 26—2&ifh, 100%-5% B; 26.1-
30 min, 5% B. The flow rate was 0.3 mL/min, thesttjon volume was jiL, and the
column temperature was 25 ESI-MS' experiments were performed using the
following conditions: negative ion mode, detectimmnge of m/z was 100-1700.
source voltage 5 kV; tube lens voltag&0 V; capillary voltage, —40 V; capillary

temperature, 275; sheath and auxiliary gas flow (N2), 42 and 1bifeary units).

2.4.2 Quantification

Cyanidin-3-glucoside, Syringic acid, Protocatechated and Vanillic acid (1.0
mg; Sigma-Aldrich, St. Louis, USA) were accuratelgighed and dissolved in 1 mL
methanol. Calibration curves were obtained by imecstandards (31.25, 62.5, 125,
500, and 100Qug/mL) thrice. The quantification of anthocyanin waspressed as

cyanidin-3-glucoside equivalents.

2.5 Antioxidant assays

The DPPH radical-scavenging capacity was determatedrding to Pan et al.
(2018). Briefly, 20uL of BRAEs and control solution were added to 2800f 65 uM
DPPH (Sigma-Aldrich, St. Louis, USA) solution in thanol. The mixture was
shaken in a 96-well plate and incubated in the dark30 min at 2% . The

absorbance was determined at 540 nm using a mateoptader (Thermo Scientific
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Varioskan Flash, Finland). ABTS and FRAP assaysewereasured using Kits

(Beyotime Biotechnology, Shanghai) according torttenufacturer’s instructions.

2.6 Anti-inflammatory activities

2.6.1 Cell culture and viability assay

RAW?264.7 cells were purchased from the Cell BankhefChinese Academy of
Sciences (Shanghai, China). The RAW264.7 cells wer¢ured in Dulbecco’s
modified Eagle’s medium (DMEM, Solarbio Life SciencBeijing) supplemented
with 100U/mL penicillin, 200ug/mL streptomycin and 10% FBS (ExCell Biology,
Shanghai) , and maintained in a humidified celulmtor at 37T with 5% CQ. Cell
viability on RAW264.7 cells was measured by MTTasas described previously
(Sun, et al., 2015). Briefly, The RAW264.7 cellsrevseeded in 96-well plates (100
uL, 2x10* cells/well) for 12 h, and different concentratiaslsSBRAE samples (100
uL) were added and cultured at'@7for 24 h, and MTT solution (1aL, 5.0 mg/mL)
were added and incubated at‘@7or 4 h. Then, DMSO (150 pL) was added to
dissolve the formazan crystals, and the absorbaasedetermined at 490 nm using a

microplate reader (Thermo Scientific Varioskan R|dSnland).

2.6.2 Determination of nitric oxide (NO) production

The RAW264.7 cells were seeded in 24-well plates1® cells/well) for 12 h,
after pre-treatment with BRAE, D-BRAE, or E-BRAE dmgm (50, 200, 40@ug/mL)
for 1 h, LPS (1ug/mL) was added and cultivated for 24 h. NO productvas

determined using the NO assay kit (Beyotime Biotedbgy, China) at 540 nm in a



202 microplate reader. All assays were performed thrice

203  2.6.3 Enzyme-linked immunosorbent assay (ELISA)

204 The RAW264.7 cells were treated the same as the@id@uction program. Cell
205 supernatants were obtained for determination of BGRF-u, IL-6, and IL-13 levels
206 using ELISA kits (Meimian Biotech, Yancheng, Chira)450 nm according to the

207 manufacturer’s instructions.

208 2.6.4 Reversetranscription and quantitative real-time PCR

209 The RAW?264.7 cells were seeded in 24-well plates1® cells/well) overnight,
210 treated with BRAE, D-BRAE, E-BRAE medium (50, 26800 ug/mL) 1 h before
211 LPS stimulation (lug/mL) for 24 h. The cells were collected, and anfR&ktraction
212 kit (Beyotime Biotechnology) was used for total RN¥traction according to the
213 manufacturer’'s protocol. The cDNA was synthesizethgi the Prime Script™ RT
214 reagent Kit (Takara, Japan) according to the mamwif@’s protocol. Real-time PCR
215 of inducible nitric oxide synthase (iNOS), cycloggnase (COX)-2, Tumor Necrosis
216 Factore (TNF-0), Interleukin-6 (IL-6), Interleukinfi (IL-1B) and B-actin was
217 performed on a CFX96 real-time PCR detection syst8in-Rad, Singapore). The
218 reaction conditions were as follows: heating téC9%etain for 30 s, followed by 39
219 cycles for 30 s at 96 and 60C, and extension at 85 for 5 s and 9% for 5s. The
220 PCR primers were obtained from Sangon Biotech (§hain China), and the
221 sequences are shown in TableBdactin used as a standard to indicate the relative

222  expression levels of target MRNAs.
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2.6.5 Western blotting

The RAW264.7 cells were plated with density of 20 cell/well in six-well
plates for 12 h. Then, the cells were treated BRAE, D-BRAE, E-BRAE medium
(400 pg/mL) for 1 h, and incubated with gg/mL LPS for 24 h. Cell lysis buffer (1
mL RIPA + 10 uL PMSF, Beyotime Biotechnology) was used for tgpabtein
extraction, and total protein concentration wagdeid using a BCA protein assay kit
(Solarbio Life Science). The protein samples weflated and boiled for 10 min,
isolated on 10%-12% SDS-PAGE, and then transfetoech PVDF membrane
(Beyotime Biotechnology, China). The cells wereuinated with 5% skim milk
powder for 2 h and then incubated with primary laosdies (iNOS antibody, COX-2
antibody, c-Jun NH2-terminal kinase (JNK)/p-JNK ibatly, p38/p-p38 antibody,
extracellular signal-regulated kinase (ERK)/p-ERAHtilaody, p65/p-p65 antibody,
Inhibitor ~ of NF«B  (IkB)/p-IkB  antibody, p-actin  antibody, and
glyceraldehyde-3-phosphate dehydrogenase (GAPDHbaaly, all of which were
purchased from Cell Signaling Technology, MA, US#)4 °C overnight. The cells
were washed thrice with TBST and incubated with $beondary antibodies for 2
hours, and then washed with secondary antibody $TT&rice. Protein bands were

scanned using the ChemiDoc™ Touch Imaging Systd@-AD, USA).

2.6.6 Immunofluorescence staining

The RAW264.7 cells were plated with density of Z° cell/well in six-well

plates for 12 h cells. The cells were then treatéti BRAE, D-BRAE, E-BRAE
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medium (40Qug/mL) for 1 h, and LPS (jkg/mL) incubated for 24 h. The tablets were
washed twice with PBS, and incubated with 4% panaéddehyde solution for 10
min. Then, the cells were incubated with the priyramtibody (p65 antibody) at 4 °C
overnight. The cells were washed three times will PBS and incubated with
secondary antibodies at 37 °C for 1 h in the d&kally stained and image

acquisition.

2.7 Satigtical analysis

The data were analyzed using SPSS 25.0 and aressegor as mean+S.D.
One-way ANOVA followed by Tukey's test was used @ssess the statistical
differences among groups. p<0.05 means signifistatistically. All experiments

were performed in triplicate.
3. Results
3.1 Characterization of the phytochemicalsin BRAEs

The composition of the 80% methanol extract ofttliee black rice samples was
identified by UPLC-LTQ-Orbitrap-MS/MS techniques. tAtal of nine compounds
were tentatively identified on the basis of retenttimes (%), m/z, and M$data and
were compared to existing literature. The datandigg the identified compounds is
summarized in Table 2. The DAD chromatogram at 280of BRAES is shown in
Figure 1, and the MSspectra and proposed fragmentation patterns oé sdemtified
peaks are presented in Figure 2. The charactenzati nine peaks is described as

follows.
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Peak 1 @ 2.53 min) with m/z =197.81 and showed fragmentabm/z=153.92
(IM-H-COQ]) and 135.88 ([M-H-HO-COOQ]) (Donato, et al., 2016) was identified
as syringic acid. Peak 2z(B.48 min) showed the precursor ion at m/z=153102 a
fragment ion at m/z=109.01[M-H-CODQ]dentified as protocatechuic acid (Sun, et al.,
2015). Peak 3 t 7.95 min) with m/z=609.15 and showed a fragmenmt &
m/z=447.08 and 284.99, which were related to tles lof hexose moiety and two
hexose  moieties, this compound was tentatively tifled as
cyanidin-3,5-O-diglucoside (Hao, et al., 2015; Hetial., 2013; Pereira-Caro, et al.,
2013). Peak 4 #t 8.33 min) possessed the precursor ion at m/z 947hich
fragmented with a loss of hexose group to produdaughter ion at m/z 285, peak 4
was tentatively identified as cyanidin-3-glucosithao, et al., 2015; Hirawan, et al.,
2011; Hou, et al.,, 2013; Pereira-Caro, et al., 20F2ak 5 ¢ 9.07 min) with
m/z=461.11 was tentatively identified as peonidighdcoside (Hao, et al., 2015;
Hirawan, et al., 2011; Hou, et al., 2013; PereieaeC et al., 2013) and produced
fragment ion at m/z 299.05, which correspond toltiss of a hexose moiety. Peak 6
(tr 9.83 min) was tentatively identified as cyanididap, et al., 2015) with the
negatively charged molecular ion ([M-H]at m/z 285.04 and fragment ion at
m/z=257.03 and 241.04. Peak g 10.12 min) with the precursor ion at m/z = 167.04
and fragment ions at m/z = 108.01, 123.00 and B5W&s tentatively suggested as
vanillic acid (Wang, et al., 2014). Peak 8 {10.57 min) showed the precursor ion at
m/z = 463.09 and fragment ions at m/z = 301.0b¢a bf a hexose moiety), 281.23,

and 395.24, and tentatively identified as delphimiglglucooside (Li, et al., 2012; Oh,
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et al., 2008). Peak 9g(110.83min) was tentatively identified as gingerglyoid B
(Sun, et al., 2017) based on the precursor ion/at=n¥23.50 and fragment ions at

m/z = 677.46, 397.17.

A UPLC-LTQ-Orbitrap-MS/MS method was established tuantify the
individual compounds in BRAEs. The calibration asvof cyanidin-3-glucoside,
syringic acid, protocatechuic acid and vanillic dacivere y=6.1959 x+4.2681
(R*=0.9999), y=8.3515 x-46.26 {R0.9999), y=4.2743 x-25.268 {80.9999), and
y=4.1554 x-40.082 (&0.9997), respectively. As shown in Table 2, thejoma
anthocyanin in BRAE, D-BRAE and E-BRAE was cyani8uglucoside (Fig.1, peak
4;27.45+£0.38, 17.70+£0.41 and 7.45+0.12 mg C3G/g D¥d¥pectively.), along with
the following four minor components: peonidin-3-gbside (3.22+0.26, 2.12+0.03
and 1.32+0.01 mg C3G/g DW, respectively.), cyanlfrdiglucoside (not detected,
1.21+0.11 and 1.39+0.14 mg C3G/g DW, respectivelgyanidin (not detected,
1.13£0.03 and 0.36+0.01 mg C3G/g DW, respectivegd delphinidin-3-glucooside
(1.37£0.04, 0.62+0.01 and 0.70+£0.01 mg C3G/g D\Wpeetively.), These results are
consistent with previous studies (Hao, et al., 2@k, et al., 2018b). Compared with
BRAE, the contents of cyanidin-3-glucoside and p@ioR3-glucoside decreased
significantly in D-BRAE by 35.52% and 34.16%, resippeely (p<0.05), and in
E-BRAE by 72.86% and 59.01%, respectively. The eonhbf protocatechuic acid
was increased obviously in E-BRAE by 3.1-fold. Ggamwas found in D-BRAE and
E-BRAE (1.13+0.03 and 0.36+0.01 mg C3G/g DW, resipely), whereas BRAE did

not contain these anthocyanins. Anthocyanins wdrerntolabile, while the



309 drum-dried and extrusion were thermally proces§g@nidin and protocatechuic acid

310 are the degradation products of C3G.

311 3.2 The TPC/TFC/TAC of BRAEsS

312 The TPC, TFC, and TAC of the BRAEs are shown inl@&h The BRAE

313 showed higher contents in total phenolic and ant@oins (138.82+4.21 mg GAE/g
314 DW and 121.79+8.28 mg C3G/100 g DW, respectivelyant in D-BRAE and

315 E-BRAE, while the TFC of E-BRAE (68.27+2.78 mg CAH)W) was higher than of
316 BRAE and D-BRAE. D-BRAE exhibited the lowest corttefphenolics (59.74+2.05
317 mg GAE/g DW), flavonoids (10.30+0.18 mg CAE/g DWand anthocyanins
318 (19.62+0.89 mg C3G/g DW) among the different sasip@Bmpared with BRAE, the

319 TPC and TAC of D-BRAE and E-BRAE were significandgcreased.

320 3.3 Antioxidant activities

321 As shown in Table 3, D-BRAE and E-BRAE exhibitedrsficant decrease in
322 the DPPH radical scavenging activity (0.05£0.01 rtriblox/g DW and 0.19%0.07
323 mM trolox/g DW, respectively) compared to that iRBE (0.29£0.10 mM trolox/g
324 DW). The ABTS radical scavenging activity of BRAEsv3.27+0.36 mM trolox/g
325 DW, higher than that in D-BRAE and E-BRAE (0.30£®.,M trolox/g DW and

326 1.44+0.02 mM trolox/g DW, respectively). The fernieducing activity of BRAE
327 (1.02+0.16 mM FeSO4/g DW) was significantly higtiean that of D-BRAE and
328 E-BRAE (0.24+0.02 mM FeSO4/g DW and 0.40+0.03 mMS®&d4/g DW,

329 respectively, p<0.05). It is obvious that drum-drand extruded treatment decreased
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the anti-oxidant activities of BRAEm vitro, and the the antioxidant activities of

E-BRAE significantly higher than those of D-BRAE.

3.4 Anti-inflammatory activities

3.4.1 Cell Cytotoxicity

The cytotoxic effects of BRAE, D-BRAE and E-BRAE mgedetermined using
the MTT assay. As shown in Figure 3, the cell Jigbof the RAW 264.7 cells was
above 100% at a concentration of 50—-4@JmL among the three BRAES, which
demonstrated that the survival rate of RAW 264.[isamaight be influenced by the
BRAESs. To investigate the relationship between eatration and anti-inflammatory
effect of BRAES, three concentrations of BRAEs (200, and 40Qug/mL) were

selected for subsequent experiments.

3.4.2 Effects of BRAEs on NO/PGE2 production, iNOS and COX-2 mRNA and

proteins expression in RAW264.7 cells

NO and PGE2 are the important inflammatory sigmahgduction molecules,
which are generated by INOS and COX-2, respectifdigram & Wu, 2017; Oh, et
al., 2017). As shown in Fig 4A and B, comparedhi® wntreated control group (NC),
LPS stimulation significantly increased the seoretof NO and PGE2 (p<0.001).
BRAE, D-BRAE and E-BRAE dose-dependently suppresd#d secretion in
LPS-stimulated macrophages. When treated with tighekt concentration (400
ug/mL), BRAE, D-BRAE and E-BRAE reduced the levels MO in activated

macrophages by 66.5%, 41.8%, and 78.0%, respectBRIAE (50, 200, 40Qg/mL),



351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

D-BRAE (200, 400ug/mL), and E-BRAE (50, 200, 40Qg/mL) significantly

decreased the PGE2 production in LPS-induced RAW26dlls. Pretreatment with
400 pg/mL BRAE and D-BRAE and 5Qug/mL E-BRAE showed the highest
inhibitory activities of PGE2 secretion (29.5%, &b, and 27.6%, respectively).
These results indicated that drum-dried and exttuBRAE did not affect the

anti-inflammatory effects of BRAE on NO and PGER2rséon.

Studies have shown that NO and PGE2 are synthebizgedOS and COX-2,
respectively, in a pro-oxidant, pro-inflammatory veanment (Vendrame &
Klimis-Zacas, 2015). Therefore, the changes in iND8 COX-2 were detected by
RT-gPCR and Western blot in this study. Resultssli@wvn in Fig 4C, D, E, and F.
Compared with the NC group, the mRNA expressioniNDS and COX-2 was
dramatically upregulated by LPS ¢0.001). However, BRAE (200 and 4Q/mL),
D-BRAE (400ug/mL), and E-BRAE (50, 200, 400y/mL) significantly suppressed
the mRNA expression of INOS. Pretreatment with 4§0nL BRAE and 20Qug/mL
showed the highest inhibitory activities of INOS NWR expression (69.4%, 65.4%,
and 71.6%, respectively). BRAE (200 and 4@pmL), D-BRAE (400ug/mL), and
E-BRAE (200, 40Qug/mL) significantly decreased the mRNA expressiorCOX-2
dose-dependent manner. When treated with the higloesentration (40@ug/mL),
D-BRAE and E-BRAE were more effective on COX-2 mRM&els (0.20+0.01 and
0.11+0.01, respectively) relative to BRAE (0.03#).0Similarly, as shown in Fig. 4E
and F, incubation of macrophages with LPS alonemdtally increased the

expression of INOS and COX-2 at the protein letxahtin the untreated cells (NC, p
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<0.05). BRAE, D-BRAE, and E-BRAE inhibited the et expression of INOS and
COX-2 at 400ug/mL; BRAE and E-BRAE showed the optimal inhibitaakility of

INOS expression (0.24+0.03) and COX-2 (0.33+£0.1@3pectively. In conclusion, it
was observed that BRAEs reduced NO and PGE2 smurffigure 4A and B) to
inhibit the inflammatory response by downregulatiNgS and COX-2 mRNA and
protein expression (Fig 4 C, D, E, and F). Furtheam the inhibitory activities of

BRAE were not affected by drum-drying and extrusion

3.4.3 Inhibitory effects of BRAES on inflammatory cytokines production in RAW 264.7

cells

Studies have reported that several pro-inflammatgtgkines, such as TN&-
IL-6, and IL-18, play important roles in the inflammatory respgnaed they can
activate macrophages when stimulated by LPS (Xial.e 2019). Furthermore, the
expression of COX-2 could be promoted by Ikdecisively, and the secretion of NO
could promote the release of pro-inflammatory citek, while IL-6 could directly
induce the expression of INOS (Ren, et al., 20I8)explore the anti-inflammatory
ability of BRAES, the release and mRNA expressibmpro-inflammatory cytokines
including TNFe, IL-6, and IL-13 were determined by ELISA and RT-gPCR assays.
As shown in Figure 5 A-F, the production and mRNé#ression levels of TNk
IL-6, and IL-18 were significantly increased by LPS stimulatioored compared with
those in the NC group (p<0.01). Pretreatment wigAB, D-BRAE (200ug/mL, 400
ug/mL) and E-BRAE (400ug/mL) significantly decreased TNd-production in

LPS-induced RAW264.7 cells. The TNFmhibitory activity of 200ug/mL BRAE
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(33.4%) and 40Qug/mL D-BRAE (41.2%) were obviously superior to 406/mL
E-BRAE (13.4%). BRAE, D-BRAE (200, 40Qg/mL) and E-BRAE significantly
suppressed the mRNA expression of TiNEFig 5 B). Furthermore, pretreatment with
400 ug/mL BRAE and 50ug/mL showed the highest inhibitory activity of TN#F-

MRNA expression.

IL-6 and IL-13 are macrophage activators and play important rofes
inflammatory diseases (Xie, et al., 2019). As showrrig 5 C, pretreatment with
BRAE (400 pg/mL), D-BRAE, and E-BRAE (200 and 4Q@y/mL) dramatically
suppressed the secretion of IL-6. BRAE, D-BRAE, &8RAE dose-dependently
suppressed the mRNA expression of IL-6 (Fig 5 Dhew treated at the highest
concentration (40@g/mL), BRAE and E-BRAE showed stronger inhibitolyildies
than D-BRAE at IL-6 mRNA level. As shown in Fig 5 gretreatment of D-BRAE
and E-BRAE at 20Qug/mL significantly decreased ILB1production. Similarly, the
MRNA expression of IL- was significantly downregulated by BRAE, D-BRABda
E-BRAE. BRAE at 40Qug/mL, D-BRAE at 50ug/mL, and E-BRAE at 20Qg/mL
showed the highest inhibitory activities of II3-IMRNA expression. Taken together,
the above results demonstrated that BRAEs coulidbiinbPS-induced inflammatory
responses by suppressing the secretion and mRNAssipn of TNFe, IL-6 and
IL-1B. Therefore, the anti-inflammatory activities of BR were not affected by

drum-dried and extrusion processes.

3.4.4 Effects of BRAEs on NF-xB and MAPK activation



416 The MAPK and NF<B are two important signaling pathways in inflamioat
417 (Montoya, et al.,, 2019). The MAPK pathway includiégsee major subfamilies:
418 extracellular signal-regulated kinase (ERK) 1/2Jucr NH2-terminal kinase (JNK),
419 and p38, which play important roles in regulatihg production of pro-inflammatory
420 cytokines (TNFe, IL-1B, IL-6, IL-8) and inflammatory mediators (INOS, CEX
421 (Wang, et al.,, 2018; Zhang, et al., 2019b).Theefd(lAPK and NF<B signal
422 pathways were investigated to further clarify thei-enflammatory mechanism of
423 BRAEs. The expression levels of phospho-JNK, JNKogpho-ERK, ERK,
424  phosphor-#Ba, IkBa, phosphor-p65, and p65 were analyzed by westeittiry. Fig
425 6A shows that LPS induced the phosphorylation oK Jahd ERK (p<0.001).
426 However, BRAE, D-BRAE and E-BRAE at 4Qdy/mL dramatically inhibited the
427  phosphorylation of JINK by 62.43%, 26.28% and 82.2&pectively (p<0.001). The
428 phosphorylation of ERK was significantly inhibitegt 400ug/mL E-BRAE (48.26%,
429 p<0.01). However, the expression level of p-p38 waisaffected in this study (data
430 not shown). E-BRAE (40Qg/mL) treatment showed the highest inhibitory atiteg

431 in the phosphorylation of INK and ERK among BRAEs.

432 The regulation of the NkB pathway of BRAEs was determined by western
433 blotting (Fig. 6B) immunofluorescence analysis (F&§). The phosphorylation of
434 IkBa and p65 was dramatically upregulated by LPS (@D.0while the pretreatment
435 with BRAE, D-BRAE and E-BRAE (400ug/mL) significantly suppressed the
436  phosphorylation ofdBa and p65 (52.19% and 20.46%, 24.43% and 40.149%295.

437 and 68.91%, respectively). Macrophages pretreatdd400ug/mL E-BRAE showed
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the highest inhibitory activities in the phosphatign of kBa and p65 among
BRAEs. As shown in Fig 6 C, compared with NC groupS stimulated significantly
increased the p65 nuclear translocation (p<0.0@h)le the pretreatment of BRAE
(-47.9%), D-BRAE (-31.3%) and E-BRAE (-25.9%) at04Qg/mL dramatically
inhibited the improvement (p<0.01). The resultsicated that BRAEs could block
the phosphorylation ofkBa via inhibition of NFxB p65 translocation into the

nucleus.

4. Discussion

Black rice is a special cultivar of rice mainly tuhted in Southeast Asia. It has
a higher content of phenolic and anthocyanin comgeuthan white rice. Many
studies have shown that cyanidin-3-O-glucoside @ewhidin-3-O-glucoside are the
major anthocyanins in black rice (Pang, et al., &0Pedro, et al.,, 2016;
Sangkitikomol, et al., 2010; Shao, et al., 2014m$ong, et al., 2011; Sumczynski,
Kotaskov4, et al., 2016; Zhang, et al., 2015). esuthave shown that anthocyanins
exert strong biological activities, including antidant (Sompong, et al., 2011; Zhang,
et al., 2015), anti-inflammatory (Limtrakul, et,&015; Zhao, et al., 2018), anticancer
(Chen, et al., 2015; Hui, et al., 2010), anti-diasgKang, et al., 2013; Sirilun, et al.,
2016), and anti-obesity activities (Kwon, et aD0Z). Drum drying and extrusion are
two important processing methods in the food ingu@Riaz, et al., 2009) Studies
have shown that the bioactive composition and faneat properties of dietary
compounds could be affacted by processing (Bhawaehail., 2016; Fischer, et al.,

2013; Hiemori, et al., 2009). Nonetheless, the agbahtonstituents, antioxidant and
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anti-inflammatory abilities of BRAE with differeqrocessing methods remain poorly
investigated. In this study, the chemical constitseof BRAE, D-BRAE and
E-BRAE were analyzed using UPLC-LTQ-Orbitrap-M&chniques. The results
showed that the major anthocyanin in BRAE, D-BRABdaE-BRAE was
cyanidin-3-glucoside (Fig.1, Peak 4) along with rfouminor components:
peonidin-3-glucoside, cyanidin-3,5-diglucoside, rogian and
delphinidin-3-glucooside. This is consistent witleyious research in black rice (Hao,
et al., 2015; Zhu, et al., 2018a). Compared with ABR the contents of
cyanidin-3-glucoside and peonidin-3-glucoside warglently decreased in D-BRAE
and E-BRAE, and the protocatechuic acid was inegtasbviously in E-BRAE.
Cyanidin was found in D-BRAE and E-BRAE, but notBRAE. Drum drying and
extrusion were thermal processes, whereas anthiosyavere thermolabile, which
may be the possible reason for the reduced anthotymontent in D-BRAE and
E-BRAE. Cyanidin and protocatechuic acid are thgraation products of C3G.
Interestingly, these results were the same as thioaerevious study, which showed
that thermal cooking decreased total anthocyanthGB8G contents, but increased the
content of protocatechuic acid in black rice (Bhewag et al., 2016). Hiemori et al.,
(2009) showed that thermal cooking significantlycrdased the content of
cyanidin-3-glucoside, while the content of protechiuic acid was higher than that of
raw black rice. In the present study, compared WBBAE, the TPC and TAC of
D-BRAE and E-BRAE were significantly decreased. di##a have shown that

polyphenol and anthocyanins are labile to heat icgplkand the anthocyanin content
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is reduced after thermal cooking in phenol and @anin-rich foods such as black
rice and blueberry juice (Bhawamai, et al., 2016¢Hw, et al., 2010; Fischer, et al.,
2013). The results obtained by Ti et al. (2015edained that the TPC and TAC
were significantly decreased after extrusion incklace, which was similar to our
results. Results obtained by Surh et al. (2014icatdd that the anthocyanin content
was dramatically decreased by roasted, steamedfripdnand boiled treatments.
Therefore, drum-dried and extrusion significantgcoeased the contents of phenolic
and anthocyanins in black rice, which was expressedhe loss of C3G and the

increase in degradation products including cyansaid protocatechuic acid.

Research has indicated a high correlation betweleenglic content and
antioxidant activity (Shao, et al., 2018), owing tiee antioxidant activities of
anthocyanins. Results indicated that BRAE showedstiongest antioxidant activities,
as measured by DPPH, ABTS, and FRAP assays amandhtee groups. The
antioxidant activities of E-BRAE were significanttygher than those of D-BRAE.
The results of antioxidant activities were simtiarthose of TPC and TAC (Table 3).
The bioactive compounds in black rice were heatdaland degraded during
drum-drying and extrusion, which may be relatedtite reduction of antioxidant
activities. A study by Mora-Rochin et al. (2010néamed that 55% of anthocyanins

were lost by extrusion in blue maize, and ORAC eased by 6.8-24.8%.

Additionally to assess the antioxidant capacityd&s have shown that black
rice anthocyanin extracts possess extremely afidirmatory effects (Hao, et al.,

2015; Limtrakul, et al., 2015; Zhet al., 2018a). During inflammation, the secretion
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of pro-inflammatory cytokines suctas TNFe, IL-6, IL-1B, and inflammatory
mediators, including NO and PGE®ere increase@ u, et al.,, 2018). iINOS and
COX-2 are essential enzymes that generate NO arig,. AG this study, it was
observed that BRAE decreased the production of NORGE2 (Fig 4A and B) by
downregulating the INOS and COX-2 expression aptiaéein and mRNA levels (Fig
4 C-F). The production and mRNA expression of gdtammatory cytokines,
including TNF«e, IL-6, and IL-13, were dramatically suppressed by BRAE (Fig
5A-F). Additionally, the processes of drum-drieddaxtrusion did not influence the
anti-inflammatory activities of BRAEs on pro-inflamatory cytokines and
inflammatory mediator production. The results wemilar to those of a previous
study by Bhawamai et al. (2016), who reported bwdh raw and thermal cook black
rice extracts possessed similar anti-inflammatatydies on NO, IL-6, and TNFe
secretion in LPS-stimulated RAW264.7 cells. A stbgyMin et al. (2010) confirmed
that black rice extracts, C3G and its metabolitganalin and protocatechuic acid
dramatically inhibited the secretion of NO, PGE}FFo. and IL-13, as well as the

MRNA expression of INOS and COX-2 in RAW264.7 cells

Studies have shown that the activated MAPK siggalpathway plays an
important role in regulating the production of ppflammatory cytokines (TNl
IL-1B, IL-6, IL-8) and inflammatory mediators (iNOS, C&X (Wang, et al., 2018;
Zhang, et al., 2019b). Moreover, it has been detexth that MAPK signaling
pathway could regulate the activation of downstradf«B pathway (Cai, et al.,

2018). In this study, BRAE, D-BRAE, and E-BRAE (4Q@/mL) exerted
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anti-inflammatory effects by inhibiting the phospylation of JNK, ERK, kBa and
p65, and inhibiting NReB p65 translocation into the nucleus in LPS-induced
RAW?264.7 cells (Fig 6). The drum-dried and extraspyocesses did not reduce the
inhibitory consequences. Moreover, the inhibitorgtiaties of BRAE on the
phosphorylation of JNK, ERK,xBa, and p65 was significantly enhanced by the
extrusion process. The results were similar todhadsa previous study by Leem et al.,
(2014a), who found thatAcanthopanax senticosus leaves possessed strong
anti-inflammatory activities in HMC-1 cells, thesetlecreasing the serum NO, MDA,
and TNFe levels in acute inflammatory rats, and the extdugeocess enhanced the
anti-inflammatory activities in a dose-dependentnne. Bhawamai et al., (2016)
reported that thermal cooking decreased the an#imicycontent and antioxidant
abilities, but did not affect the anti-inflammatorgctivities of black rice in
LPS-induced macrophages. In brief, it could be wmred that although drum-dried
and extrusion decreased the contents of anthocyamiblack rice, the enhance of its
metabolites cyanidin and protocatechuic acid caalsb exert anti-inflammatory

activities directly.

In conclusion, this study analyzed the effects mfatdrying and extrusion on
the contents of bioactive substances, which welate@ to the antioxidant and
anti-inflammatory activities in black rice. Firghe extracts of the three black rice
samples were identified by UPLC-LTQ-Orbitrap-MS/M&hniques. Compared with
BRAE, the species of major bioactive substance® wet altered by drum-dried and

extrusion; the contents of cyanidin-3-glucoside agoebnidin-3-glucoside were
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significantly decreased in D-BRAE and E-BRAE, whjeotocatechuic acid was
increased obviously in E-BRAE. Cyanidin was foumd D-BRAE and E-BRAE,

whereas BRAE was not. Meanwhile, the TPC and TA@veggnificantly decreased
by drum-drying and extrusion, while the antioxidautivities exerted the similar
trends. The D-BRAE was inferior to E-BRAE in terofisTPC, TAC and antioxidant
activities. Moreover, cell assays suggested that pgho-inflammatory cytokines,
inflammatory mediators, and enzymes were dramétisalppressed by BRAE while
drum-dried and extrusion did not inhibit the amtilhammatory abilities. BRAE

inhibited the inflammatory response via regulatithg activation of MAPK and

NF-xB inflammatory signaling pathways, which was ndeetied by drum-dried and
extrusion processes. The results obtained may geowcientific guidance for
whole-grain resource utilization and daily healtbgd intake to regulate oxidant or

inflammation-related diseases.
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BRAE, Black rice anthocyanin extracts; D-BRAE, Drudnied Black rice
anthocyanin extracts; E-BRAE, Extruded Black ricgthacyanin extracts; LPS,
Lipopolysaccharide; NO, nitric oxide; PGE2, prosaagin E2; ELISA,
enzyme-linked immunosorbent; iINOS, nitric oxide thgse; COX-2,
cyclooxygenase-2; TNE; tumor necrosis factar: IL-6, interleukin-6; IL-1,
interleukin-B; MAPK, mitogen-activated protein kinases; NB; nuclear
factor-kappa B; JNK, jun-amino-terminal kinase; ER¥&tracellular signal-regulated
kinase; kBa, inhibitory factor kappa B alpha; SDS-PAGE, sodidodecyl sulfate—
polyacrylamide gel; TPC, total phenolic content; E5Ayallic acid equivalent; TFC,
total flavonoid contents; CAE, catechin equivalerAC, total anthocyanin contents;
C3G, cyanidin-3-glucoside equivalent; MTT,
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazatiubromide; FRAP, Ferric reducing

antioxidant power; FBS, Fetal Bovine Serum; DMS@né&thylsulfoxide.
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Table 1. Primer sequences of the genes used in RT-PCR.

Primer name Forward (5’-3) Reverse (5-3’)
B-actin ATC ACT ATT GGC AAC GAG CG TCA GCA ATG CCT GGG TAC AT
iNOS CCCTCCTGATCT TGT GTT GGA TCA ACC CGAGCTCCTGGAA
COX-2 TGC TGT ACA AGC AGT GGC AA GCA GCC ATTTCC TTC TCT CC
IL-6 TAG TCCTTCCTACCC CAATTTCC TTGGTCCTTAGC CACTCCTTC
CAA CCA ACA AGT GAT ATT CTC CAT GAT CCA CAC TCT CCA GCT
IL-1B
G GCA

TNF-a

TGT CTACTC CTC AGA GCC CC

TGA GTC CTT GAT GGT GGT GC




3 Table2. Characterization of chemical constituents of BRAKSJPLC-LTQ-Orbitrap-M$

tr

Concentration (mg/g DW)

[M-H]
Formula Fragment ions (m/2) Identification
: ions (m/2) .
(min) RAW Drum-dried Extruded
2.53 GH1¢05 197.81 153.92 [M-H-C0Q]135.88[M-H-HO-COQ], 152.99, 170.0 Syringic acid 1.95+014 3.24+0.07 3.89+0.06
3.48 GH:sO, 153.02 124.94, 109.01 [M-H-COO] Protocatechuic acid 2.31+0.68 2.64+0.12 9.50+0.10'
284.99 [M-H-2hexosé) 563.36 [M-H-HCOOH] o . .
7.95 GHog01s  609.15 Cyanidin 3,5-diglucoside \ 1.21+0.11 1.39+0.14
447.08[M-H-hexose] 499.12
8.33 GiH101  447.09 285.01[M-H-hexoseR79.21 Cyanidin-3-glucoside 27.45+0%38 17.70+0.47  7.45+0.12
9.07 GH,0:;  461.11 299.05[M-H-hexoseR79.22 Peonidin-3-glucoside 3.22+0%26 2.12+0.03 1.32+0.0P
9.83 GsHgOs 285.04 257.03, 241.04 Cyanidin 1.13+0.03 0.36+0.07
10.12 GH;O, 167.04 123.00[M-H-C0Q]151.96,108.01 Vanillic acid 2.52+0.23 1.53+0.08 1.85+0.12
10.57 GH10:,  463.09 301.01[M-H-hexosep81.23, 395.24 Delphinidin-3-glucoside 1.37+0:04 0.62+0.07 0.70+0.07
10.83 GHgO1s  723.50 677.46[M-H-HCOOH]397.17 Gingerglycolipid B \ \ \
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7

Table 3. Main Antioxidant Components and Antioxidant Acties in Black Rice Extracts

TPCB TFC TAC DPPH assay ABTS assay FRAP assay
Extracts
(mg GAE/g DW) (mg CAE/g DW) (mg C3G/100 g DW)  (mM trolox/g DW) (mM trolox/g DW) (mM FeSOa4/g DW)
BRAEA 138.8214.21a 45.97+3.45bP 121.79+8.282 0.29+0.102 3.27+0.367 1.02+0.16°
D-BRAE 59.74+2.05¢ 10.30+0.18¢ 19.62+0.89¢ 0.05+0.01¢ 0.30£0.03¢ 0.24+0.02>
E-BRAE 113.7516.24b 68.27+2.782 33.68+1.95 0.19+0.07° 1.4410.02b 0.40+0.03

A: BRAE, D-BRAE and E-BRAE represent Raw, Drum-drend Extruded Black Rice Extracts, respectively.

B: TPC, total phenolic acid contents; TFC, total/inoid acid contents; TAC, total anthocyanins ents;
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Figure captions

Figure 1. HPL C chromatogram of the BRAE, D-BRAE and E-BRAE detected at
280 nm.

Figure 2. MS? spectra and the possible fragmentation patterns. (A) Protocatechuic
acid, (B) Cyanidin  3,5-diglucoside, (C) CyanidirgRicoside, (D)
Peonidin-3-glucoside.

Figure 3. Effect of BRAE, D-BRAE and E-BRAE on cell viability of RAW264.7
cells. Cells were treated with different concentratio2%-500 ug/mL) of BRAE,
D-BRAE and E-BRAE for 24 h, cell cytotoxicity wasayzed by MTT assay. Data
are expressed as mean + S.D. from three indepengpatiments.

Figure 4. Effect of BRAE, D-BRAE and E-BRAE on NO/PGE2 production,
INOS/COX-2 mRNA and protein expression in LPS-stimulated RAW264.7 cells.
(A) NO production. (B) PGE2 production. (C) iINOS MR expressions. (D) COX-2
MRNA expressions. (E, F) INOS and COX-2 protein regpions. Cells were
pretreated with various concentrations of BRAEsIfdr before stimulation of LPS (1
ug/mL) for 24 h. The mRNA levels were detected witlal-time PCR. The protein
expression was analyzed by Western Ifledictin served as protein control. Data are
expressed as mean + SBars with different letters in the same group iatkc
statistical difference compare with LPS group (p08}; * p<0.05, ** p<0.01, ***
p<0.001 compare with the control group.

Figure 5. Effect of BRAE, D-BRAE and E-BRAE on production and mRNA

expressions of pro-inflammatory cytokines. Cells were pre-treated with different
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concentration of BRAE, D-BRAE or E-BRAE for 1 h. §lsecretion of TNk (A),
IL-6 (C), and IL-B (E) in the culture media were detected by ELISteRLPS (1
ug/mL) stimulated for 24 h. (B, D, F) The mRNA lesalere detected with real-time
PCR. Data are expressed as mean + S.D. Bars Vifidnedhit letters in the same group
indicate statistical difference compare with LP8ugr (p<0.05); * p<0.05, ** p<0.01,
*** n<0.001compare with the control group.

Figure 6. BRAE, D-BRAE and E-BRAE inhibit LPS-induced inflammatory
effects through MAPK and NF-kB pathways in RAW264.7 cdls. (A)
Phosphorylated JNK and ERK protein expression ev@) PhosphorylatedB-a
and p65 protein expression levels. (C) RE-p65 subunit nuclear translocation
determined by Confocal laser-scanning microscog\WR64.7 cells were pretreated
with 400 ug/mL of the BRAE, D-BRAE and E-BRAE for 1 h, folled by 1ug/mL
LPS stimulated 1 h for JNK/p-JNK and ERK/p-ERK, &br IxBo/p-lkBa and
p65/p-p65. Data are expressed as mean + S.D. BHrglifferent letters in the same
group indicate statistical difference compare WiBS group (p<0.05); * p<0.05, **

p<0.01, *** p<0.001lcompare with the control group.
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