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Abstract

Background and Objectives: Germination pretreatment is an effective way
to improve the nutritional quality and sensory quality of germinated brown
rice (GBR). Cold plasma pretreatment (CPP) has been demonstrated to
improve the physicochemical properties of GBR. The effects of CPP on
reducing phytic acid and improving nutrient composition in GBR have not
been evaluated, and there are few studies on the changes of phytic acid and
phytase, especially the changes of the forms and compositions of
y-oryzanol, phenolics, and flavonoids in GBR with CPP. Therefore, this
study evaluated the changes of phytase, phytic acid, y-aminobutyric acid
(GABA), y-oryzanol, flavonoids, phenolics, and antioxidant activity in GBR
with or without CPP.

Findings: The phytic acid content in CPP-treated GBR for germination of
72 h was lower (7.60 mg/g, dry basis weight [DW]) than that in untreated
GBR (9.01 mg/g DW). At the same germination time, the phytase activity
and GABA, total y-oryzanol contents in CPP-treated GBR were higher than
those in untreated GBR. However, total flavonoids and phenolics levels,
flavonoid compositions and phenolic acids contents, and T-AOC and DPPH
antioxidant capacity in CPP-treated GBR were lower than those of
untreated GBR.

Conclusions: These results indicated that CPP for brown rice was an effective
method for decreasing the phytic acid and enhancing GABA and y-oryzanol in
GBR compared with non-CPP of brown rice for germination.

Significance and novelty: CPP is beneficial to reduce phytic acid and
improve the GABA and y-oryzanol contents of GBR, which provides a
theoretical basis for producing functional and nutritious GBR foods.
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1 | INTRODUCTION

As a nutritious whole grain, brown rice may be beneficial
to prevent varieties of diseases, including hyperlipidemia,
diabetes, and hypertension (Wu et al., 2022). However, it
is hard to cook and unpalatable to eat brown rice because
of its germ and bran, thus the utilization of brown rice is
limited in the food industry. Germination can enhance
edible quality and improve a lot of nutrients of brown
rice. Therefore, germinated brown rice (GBR) has
become a new type of germinated grain foods due to its
greatly improved nutrition and texture (Nelson
et al., 2013).

Some large molecules in brown rice are hydrolyzed
during germination, such as proteins and carbohydrates,
which leads to the synthesis of biochemical and
nutritional substances (R. Li et al., 2022). Several
previous reports have demonstrated that the regular
intake of GBR may prevent chronic diseases owing to the
enhancement of y-oryzanol, vitamins, phenolic acids,
y-aminobutyric acid (GABA), and other active substances
during the germination process (Cho & Lim, 2015;
Nelson et al., 2013). Therefore, the application of
controlled grain germination processes has gained great
attention. Traditional pretreatment methods were used to
promote the synthesis of nutrients in GBR. For example,
soaking pretreatment was mainly used to control soaking
time and temperature. Additionally, some modern
pretreatment methods have been demonstrated to
promote nutritional levels of GBR, such as electric,
magnetic fields, microwaves, and ultrasonic pretreat-
ments (Goussous et al., 2010). However, these methods
may cause the degradation of some heat-sensitive
nutrients during the treatment process. Therefore, in
recent years, cold plasma technology has been used in
whole grain processing due to its characteristics of low
temperature and short processing time.

Plasma is made up of negative and positive ions, free
radicals, electrons, and various active groups, which is
regarded as a neutral ionized gas (Pankaj & Keener,
2017). In the last decade, cold plasma pretreatment (CPP)
has been shown to improve seed viability and growth in
plants such as brown rice, soybean, and wheat (Meng
et al.,, 2017). Zargarchi and Saremnezhad (2019) found
that CPP could improve the germination rate of paddy
rice. The levels of total phenolic, vitamin E, total
y-oryzanol in brown rice were enhanced by applying
cold plasma (100-200 W and 25-300s) for pretreatment
before germination (Yodpitak et al., 2019). Additionally,
Chen et al. (2016) found that CPP (1-3kV for 10 min)
could increase GABA content and a-amylase activities in
GBR. However, there are few studies on the changes of
phytic acid and phytase, especially the changes of the

forms and compositions of flavonoids, phenolics, and
y-oryzanol, in GBR with CPP.

Consequently, the purpose of this study was to
evaluate the impact of CPP of brown rice on GABA,
phytase, phytic acid, and y-oryzanol compositions, the
forms and compositions of phenolics and flavonoids, and
antioxidation in GBR. This study may contribute to
enhance the accumulation of nutrients and reduce
antinutritional factors in GBR with CPP.

2 | MATERIALS AND METHODS

2.1 | Materials

The Brown rice (Tongnuo 2) used in the experiment was
obtained from Beijing Siensaier Biotechnology Co., LTD.
The HD-300 type cold plasma equipment was purchased
from Changzhou Zhongke Changtai Plasma Technology
Co., LTD. All phenolic acid and flavonoid standards were
provided by Shanghai Yuanye Biotechnology Co., Ltd.
Total antioxidant capacity (T-AOC) of the samples was
measured using a method of test kit obtained from the
Nanjing Institute of Bioengineering. The phytase activity
in the sample was determined using a method of ELISA
kit purchased from Jiangsu Meimian Industrial Co., Ltd.
Other chemicals used in the work were analytically pure.

2.2 | CPP of brown rice

Brown rice was put into a 100 cm acrylic reactor. The
acrylic reactor was placed in a vacuum reactor and the
pressure was adjusted to 40-50 Pa. The reactor was filled
with helium when the vacuum system reached the
appropriate pressure. The equipment was operated at
400 W for 5min after reaching 130 Pa in the reactor. In
our previous tests, CPP powers of 100, 200, 300, 400, and
500 W, treatment time of 1, 2, 3, 4, and 5min were
selected as treatment conditions, and untreated brown
rice was used as control. It was observed that phytic acid
in GBR was the lowest for the CPP at 400 W and 5 min,
compared with the control sample. Accordingly, the CCP
condition was selected at 400 W for 5 min in this study.

2.3 | Germination procedure

CPP-treated brown rice and untreated brown rice were
soaked in deionized water (30°C, 24 h). After soaking, the
samples were drained and distributed in a disposable
petri dish. The germination conditions of the samples
were for 18, 36, 54, and 72h at 30°C in the dark. The
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sample was smashed, passed a 60-mesh sieve, and stored
at —18°C.

2.4 | Measurement of phytase and
phytic acid

The contents of phytic acid in samples were measured
using a previous method by Haug and Lantzsch (1983).
HCI solution (0.2 mol/L, 20 ml) and sample (0.5 g) were
mixed into centrifuge tube. The sample was extracted by
vibration for 3h at 25°C. Extracted solution (1 ml) and
ammonium ferric sulfate solution (0.2 g/L, 2ml) were
mixed in the plastic tube after centrifugation (15min,
3500 r/min). The resulting solution was incubated in a
boiling water bath (30min) and an ice water bath
(15min). The supernatant (1 ml) and the dipyridine
solution (1g/100 ml, 1.5ml) were mixed in the plastic
tube after centrifugation (10 min, 3500 r/min), which was
vibrated and mixed. The distilled water was as blank, and
the absorbance at 519 nm was measured.

2.5 | Measurement of GABA

The GABA levels in samples were performed following a
modified method (Ding et al., 2018). Ethanol solution
(10 ml, 80%) and sample (1.0 g) were mixed into a test
tube and extracted by ultrasonic treatment for 0.5 h. The
sample was then oscillated in a vortex mixer for 2 min
and stood for 5min. Centrifugation was performed for
10min at 5000r/min. 4-dimethylamine-azobenzene
4-sulfonyl chloride (2g/L, 400 ul), sodium bicarbonate
solution (0.04 g/ml, 0.2 ml), and supernatant (1 ml) were
mixed into a plastic tube and derived in a water bath
under for 20 min at 70°C. Filtration for the sample was
carried out with 0.22um organic filter membrane
(0.22 um) before determination. The high-performance
liquid chromatography (HPLC) (Thermo Scientific
U3000) conditions were set as follows. The UV-visible
detector was at 254 nm, the column was Agilent plus-C18
(100 mm X 4.6 mm, 3.5um). The elution solvent was
sodium acetate trihydrate (6.8g/L) and acetonitrile
(65:35, v/v). Elution was carried out at 1.0 ml/min for
10 min. The GABA standard was regarded as a control to
draw the standard curve and calculate GABA content in
the samples.

2.6 | Measurement of y-oryzanol

y-oryzanol levels in samples were examined by a
previously described method (D. Li et al, 2020).

Methanol (10ml) and sample (3g) were mixed in a
plastic tube, and ultrasound treatment at 25°C for 1h.
The extract was transferred into a rotary evaporation
flask and steamed (50°C, 50 r/min) to dry after centrifu-
gation at 3500 r/min for 15 min, methanol was accurately
added to constant volume (6 ml), then was mixed by
vortex shaker for 5min. The resulting solution in the
rotary evaporation bottle was passed through 0.45pum
organic microporous membrane. HPLC (Thermo Scien-
tific U3000) system conditions were operated at
UV-visible detector of 325nm, injection volume of
10ul, and C18 column (Agilent, 5um, 150 mm X 4.6
mm). Elution time was 35 min with a flow rate of 1.4 ml/
min. Elution solvents were methanol, acetic acid,
acetonitrile (54:3:44v/v/v). y-oryzanol standard was
regarded as a control to draw the standard curve and
calculate

y-oryzanol content in all samples.

2.7 | Extraction of phenolics

The extraction of free and bound phenolics for samples
was performed using the method of Wu et al. (2018).
Briefly, samples were mixed with chilled acidified
methanol and then homogenized in an ice bath using a
homogenizer for 5min and centrifuged for 10 min. Free
phenolic was obtained from the supernatant by rotary
evaporation at 45°C. The residue was digested with
NaOH for 1h under dark conditions, neutralized with
concentrated hydrochloric acid, and then extracted five
times with ethyl acetate. Bound phenolic was obtained
from the supernatant by rotary evaporation at 45°C.

2.8 | Measurement of total flavonoids
and phenolic

The measurement of total flavonoids and phenolic
contents in the sample was performed following the
method of Wu et al. (2018). Briefly, 100l of the
extraction were mixed with 100 ul of methanol and
250l of Folin-Ciocalteu for 6min, and 2.5ml of
7g/100ml Na,CO; and 2ml of distilled water were
added. The reaction time was 90 min at room 25°C, and
the absorbance of the mixture was measured at 765 nm.
The total phenolic content of the samples was expressed
as gallic acid equivalents per 100g dry weight of the
sample (mg GAE/100g DW). The 0.1 ml extract was
mixed with 0.2ml of 5g/100ml NaNO, solution for
6 min, 0.25 ml of 10 g/100 ml AI(NO3); solution for 6 min,
and 2ml of 4 g/100 ml NaOH was added. The reaction
time was 15min at 25°C, and the absorbance of the
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solution was measured at 510 nm. The total flavonoids
content of the sample extract was expressed as rutin
equivalent per 100 g dry weight of the sample (mg RE/
100 g DW).

2.9 | Flavonoid and phenolic
compositions determination

Phenolic acids in all samples were measured following the
method of Ti et al. (2014). Briefly, HPLC (Thermo Scientific
U3000) system conditions were operated at UV-visible
detector of 280 nm, injection volume of 20ul, and C18
column (Agilent, 5um, 250 mm X 4.6 mm). Elution time
was 55 min with a flow rate of 1.0 ml/min. Elution solutions
A and B were 0.4% aqueous and acetonitrile. The elution
condition: 0 min, 95% A; 0-40 min, 95%-75% A; 40-45 min,
75%-60% A; 45-50 min, 60%-50% A; 50-55 min, 95% A.

Flavonoids compositions in the sample were mea-
sured following the method of Pradeep and Sreerama
(2015). HPLC (Thermo Scientific U3000) system condi-
tions were operated at UV-visible detector of 342 nm,
injection volume of 20 ul, and C18 column (Agilent,
5 um, 250 mm X 4.6 mm). Elution time was 55 min with a
flow rate of 1.0 ml/min. Elution solutions A and B were
formic acid (pH 2.8) and acetonitrile, respectively. The
elution condition: 0-5 min, 90% A; 5-31 min, 90%-77% A,
31-43 min, 77%-65% A; 43-55 min, 65%-0% A.

2.10 | Antioxidant capacity
determination

The  2,2-Diphenyl-1-(2,4,6-trinitrophenyl)  hydrazyl
(DPPH) assay in samples was measured using the
previously described method by Xi et al. (2011). Briefly,
the sample dilution was mixed with 3ml, 0.1 mm/L
DPPH methanol solution, and the absorbance was
measured at 517nm after reaction for 20 min. Water
soluble vitamin E (Trolox) was used as the standard
sample to prepare the standard curve of methanol
solution. The results were expressed as the number of
micromoles containing Trolox equivalent in 100g dry
weight (umol Trolox/100 g).

2.11 | Statistical analysis

Experiments were replicated for at least three times. Data
were reported by mean+SD (n=3 or 4). Different
samples were analyzed by Duncan's test and one-way
analysis of variance (p <.05) with SPSS 25.0 (SPSS Inc.)
Software.

3 | RESULTS AND DISCUSSION
3.1 | Reduction of phytic acid and
improvement of phytase in GBR with and
without CPP

Changes of phytase and phytic acid in GBR with and
without CPP for different germination hours are shown
in Figure la,b. With the increase of germination time
(18-72h), a decreased trend was observed for the
content of phytic acid in untreated and CPP-treated
GBR. The phytic acid level in GBR was decreased by the
CPP of brown rice before germination. During whole
germination, the phytic acid contents in untreated GBR
and CPP-treated GBR were 9.01-12.61 mg/g DW and
7.60-11.73 mg/g DW, respectively. At the same germi-
nation time, phytic acid levels in untreated GBR were
higher than those in CPP-treated GBR. Additionally, at
the same germination time except for 18 h germination
(Figure 1b), phytase activity in CPP-treated GBR was
higher than that in untreated GBR.

Phytic acid is considered to be an antitrophic factor that
negatively affects mineral absorption in the body. There-
fore, reducing phytic acid content in whole grains is
beneficial to promote mineral absorption in the human
body. The phytic acid level in GBR (72 h) was decreased by
54.40% compared with ungerminated brown rice (Liang
et al., 2008). The decrease of phytic acid content in GBR
could be explained by the enhancement of phytase activity
during the germination processes (Towo et al., 2006).
Therefore, it was demonstrated that phytic acid content was
reduced by CPP with stimulating phytase activity in GBR.

3.2 | Increase of GABA level in GBR
with and without CPP

Increase in GABA level in GBR with and without CPP
for different germination hours is presented in
Figure 1lc. With the increase of germination time
(0-72h), GABA level in GBR was boosted, and GABA
level in GBR was increased by CPP. During whole
germination, GABA contents in untreated GBR and
CPP-treated GBR were 13.89-27.75mg/100g DW and
17.21-42.42mg/100g DW, respectively. At the same
germination time, GABA levels in untreated GBR were
lower than those in CPP-treated GBR.

The influence of CPP on GABA level in GBR was
investigated by Chen et al. (2016), who showed that GABA
level in GBR was increased by about 1.5 times compared
with that in untreated samples after treatment at 3kV for
10 min. Additionally, it was reported that CPP increased
GABA level in germinated paddy (Zargarchi &
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FIGURE 1 The contents of phytic acid, GABA, and phytase activity in germinated brown rice with and without cold plasma

pretreatment for different germination hours. (a) Phytic acid, (b) phytase, (c) GABA. *p < .05, **p < .01, and ***p <.001 were considered
statistically significant, highly significant, and extremely significant between UGBR and CPPGBR at the same germination time,
respectively. Different letters at the top of the columns indicate significant differences (p < .05, n = 3). CPPGBR, germinated brown rice with
cold plasma pretreatment; DW, dry basis weight; UGBR, germinated brown rice without cold plasma pretreatment.

Saremnezhad, 2019). The synthesis of GABA in plants is
mainly due to the decarboxylation of L-glutamic acid, and
the activity of glutamate decarboxylase (GAD) is positively
correlated with GABA level (Ando & Nakamura, 2016).
Therefore, the enhancement of GABA level in GBR might
be related to the activation of GAD after CPP.

3.3 | Increase of y-oryzanol level in GBR
with and without CPP

Changes in the level of y-oryzanol and steryl ferulates in
GBR with and without CPP are shown in Table 1. The
contents of 24-methylenecycloartanyl ferulate were the
highest in GBR, followed by level of cycloartenyl ferulate,
sitosteryl ferulate, and campesteryl ferulate. During whole
germination processes, steryl ferulates and total y-oryzanol
levels in GBR increased first, then decreased, reaching the
highest contents at 36 h. Total y-oryzanol contents in CPP-
treated GBR and untreated GBR were 95.68-152.66 ug/g

DW and 73.77-137.99 ug/g DW, respectively, in the whole
germination period. At the same germination time, total
y-oryzanol levels in untreated GBR were lower than those
in CPP-treated GBR.

The influence of CPP on y-oryzanol level in GBR was
evaluated by Yodpitak et al. (2019), who found that
y-oryzanol level was first increased during germination,
then gradually decreased, and y-oryzanol levels in GBR
were increased by CPP. The reduction of total y-oryzanol
level after reaching a maximum value at germination for
36 h might be owing to the factors, mainly including CPP
time, CPP temperature, and CPP energy.

3.4 | Changes of free, bound, and total
phenolic contents in GBR with and
without CPP

Table 2 shows the changes of bound, free, and total
phenolic levels in GBR with and without CPP. In the whole
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TABLE 1

germinated brown rice during 72 h germination (ug/g DW)

Sample Time (h)

UGBR Control
18
36
54
72
CPPGBR Control
18
36
54

72

Cycloartenyl
ferulate

33.17 + 1.56°F
37.54 +0.70°°
42.50 +1.94*¢
38.43 +2.54°°
21.53 +1.63%¢
32.93 +0.96%F
44.56 +1.38°C
53.47 +1.67°**
50.03 + 1.91°8
27.80 + 1.16°"

24-Methylenecycloartanyl

ferulate

47.83 +2.77°P

53.76 + 4.91%°CP

59.47 + 4.57°C
58.56 + 3.79°C
28.31 + 0.98°F
48.64 +1.529P
69.10 + 1.37°®
82.13 +1.86**
78.16 + 1.51°4
40.95 + 0.94°"

Campesteryl
ferulate

14.74 +0.30"P
16.33 + 1.28%°°P
17.62 +1.13*¢
15.88 + 1.7720°P
12.27 +0.35
15.06 + 0.39°°
20.59 +0.32°8
23.05 +0.74 %4
22.34 +0.50*4B
12.77 + 0.08%F

Sitosteryl
ferulate

15.49 +0.30°C
16.61 + 0.21°E€
18.41 + 1.09*B
15.56 + 0.45°C
11.66 + 0.42°P
15.35+0.23>¢

18.41 + 1.8230AB

20.97 +1.99*4
20.63 +1.90*4
14.16 + 0.65°C

Changes in the total y-oryzanol contents and compositions of steryl ferulates of untreated and cold plasma-pretreated

Total y-oryzanol
111.22 +4.57°F
124.23 + 6.72°P
137.99 + 5.81°¢
128.43 + 8.04%°CP
73.77 +2.70%¢
111.98 +2.30°F
152.66 + 4.86""
179.62 + 6.22**
171.16 + 5.74*4
95.68 + 1.85%"

Note: Values are presented as mean =+ standard deviation (n = 3). Different lowercase letters indicate significant differences of the data among the different
germination hours in the same group (UGBR group or CPPGBR group) (p <.05), and different capital letters indicate significant differences in the same

column (p <.05).

Abbreviations: CPPGBR, germinated brown rice with cold plasma pretreatment; DW, dry basis weight; UGBR, germinated brown rice without cold plasma

pretreatment.
TABLE 2
Sample Time (h)
UGBR Control
18
36
54
72
CPPGBR  Control
18
36
54
72

Phenolics (mg GAE/100 g DW)

Flavonoids (mg RE/100 g DW)

Changes in the phenolic contents of untreated and cold plasma-pretreated germinated brown rice during 72 h germination

Free

86.17 + 0.90°"
85.62 +2.67°"
101.98 +1.05**
84.11 + 1.72°F
71.43 +1.25°P
85.95 + 1.88°°
86.97 + 1.93°°
79.13 + 1.84°C
77.33 + 1.05°¢
62.73 + 0.47°F

Bound

20.03 + 0.96%
29.19 +1.41°¢

41.38 +1.37°°
43.09 £1.10°¢
48.76 + 0.61**
20.26 + 0.34°
35.34 +0.37°F

34.52 +0.25%"

39.55 + 0.67°F

45.02 + 0.22°®

Total

106.20 + 1.54°F

116.43 + 3.43%°
143.36 £1.85**
127.19 +0.83%"

120.19 + 1.45°C

106.21 + 1.88%%

122.32 + 2.13°C

113.64 +1.97°P

116.88 + 1.57°°
107.75 + 0.34%F

Free

23.37 +0.76°"
23.82 +0.36"
22.25 +0.36™"
28.39 +0.99 **
24.54 + 3.83%F
22.64 +1.08""
22.55 +0.75"
27.68 +0.19**
23.16 + 0.23°°
14.45 +1.02°¢

Bound

20.46 +1.18°°
29.63 + 1.06""
35.43+0.13%
29.38 +2.17°"
30.89 + 1.72°8
20.89 + 0.30°°
27.23 +0.31°¢
26.48 + 0.20°C
27.10 + 0.70°¢
30.35 + 0.55%®

Total

43.83 +0.86°°
53.46 +1.34""
57.68 +0.41 **
57.77 + 3.09**
55.43 + 3.70°°AB
43.53 +£1.28°
49.78 + 0.96"C
54.16 + 0.19°®
50.26 + 0.60°C
44.79 + 0.51°°

Note: Values are presented as mean + standard deviation (n = 4). Different lowercase letters indicate significant differences of the data among the different
germination hours in the same group (UGBR group or CPPGBR group) (p <.05), and different capital letters indicate significant differences in the same

column (p <.05).

Abbreviations: CPPGBR, germinated brown rice with cold plasma pretreatment; DW, dry basis weight; GAE, gallic acid equivalent; RE, rutin equivalent;
UGBR, germinated brown rice without cold plasma pretreatment.

germination period, total and free phenolic contents in
GBR were increased first, then decreased, while the
contents of bound phenolic were increased. Free phenolic
levels in untreated GBR and CPP-treated GBR were
7143-101.98mg GAE/100g DW and 62.73-86.97 mg
GAE/100g DW, respectively, after 18-72h germination.
Bound phenolic contents in CPP-treated GBR and
untreated GBR were 34.52-45.02 mg GAE/100g DW and

29.19-48.76 mg GAE/100 g DW, respectively, in the whole
germination period. During the whole germination, the
contents of total phenolic in untreated GBR and CPP-
treated GBR were 116.43-143.36 mg GAE/100g DW and
107.75-122.32mg GAE/100g DW, respectively. At the
same germination time (36-72h), total, free, and bound
phenolic contents in untreated GBR were higher than those
in CPP-treated GBR.
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These findings were similar to the results of Ti et al.
(2014), who demonstrated an increased trend in the
content of phenolics in GBR, and total, bound and free
phenolic levels in GBR were improved by 63.16%, 36.50%,
and 76.67%, respectively, for germination processes
(0-48h), respectively. The biosynthesis of phenolic
compounds and release of aglycones from glucosides
during germination might have promoted to the en-
hancement of phenolic level in germinated grains
(Pradeep & Sreerama, 2015). Zargarchi and Saremnezhad
(2019) found a lower total phenolic content in cold
plasma-treated germination paddy rice. However, the
higher phenolic level in CPP-treated GBR was found by
Yodpitak et al. (2019), who considered that cold plasma
treatment might provide a stress stimulation that could
boost the accumulation of phenolics in GBR. It was
attributed to many factors, including the decomposition
of phenolic and inactivation of phenylalanine ammonia-
lyase (PAL) in GBR owing to application of CPP (Gémez-
Favela et al., 2017).

3.5 | Changes of free bound and total
flavonoid levels in GBR with and
without CPP

Table 2 shows the changes of total, bound, and free
flavonoid contents in GBR with and without CPP. In the
whole germination period, total, bound, and free
flavonoid levels in GBR were first enhanced, then
decreased. During whole germination, free flavonoid
contents in CPP-treated GBR and untreated GBR were
14.45-27.68 mg GAE/100 g DW and 22.25-28.39 mg RE/
100 g DW, respectively. During the whole germination,
bound flavonoid contents in CPP-treated GBR and
untreated GBR were 26.48-30.35 mg RE/100 g DW and
29.38-35.43 mg RE/100 g DW, respectively. During the
whole germination, total flavonoid levels in CPP-treated
GBR and untreated GBR were 44.79-54.16 mg RE/100 g
DW and 53.46-57.77 mg RE/100 g DW, respectively. At
the same germination time, total, bound, and free
flavonoid contents in untreated GBR were higher than
those in CPP-treated GBR.

Ti et al. (2014) obtained that total, bound, and free
flavonoid levels in GBR were increased by 23.62%,
23.63%, and 23.40%, respectively, with the increase of
germination time (0-48 h). The phenylpropyl metabolic
pathway might activate the synthesis flavonoid pathway
during seed germination, thus promoting the further
formation of acetyl coenzyme A esters (CoA) into
flavonoid (J. Wang et al., 2020). This could explain the
increase of flavonoids in brown rice during germination.
During germination processes, the synthesis of

flavonoids in grain seeds was mainly regulated by
PAL and chalcone isomerase (CHI), and other key
enzymes, and a specific flavonoid would be synthesized
in seeds under the action of certain enzymes (Kashmir
et al., 2009). L. Wang et al. (2013) demonstrated that the
activities of CHI and PAL in germination grain seeds
were positively associated with the content of total
flavonoids. Thus, a negative influence of CPP on
flavonoids might be owing to the factors, including the
decomposition of flavonoids in GBR and the inactivation
of CHI and PAL as a key enzyme in flavonoids
biosynthesis.

3.6 | Changes of phenolic acids
compositions in GBR with and
without CPP

Eleven phenolic compositions were detected in bound
and free phenolics in GBR with and without CPP
(Table 3). CPP changed the level of free phenolic acid in
GBR. During whole germination, the free protocate-
chuic acid contents in CPP-treated GBR and untreated
GBR were 10.58-17.26 ug/g DW and 15.28-18.83 ug/g
DW, respectively. The free ferulic acid contents in
untreated GBR and CPP-treated GBR were
10.31-11.46 pg/g DW and 11.49-12.43 ug/g DW, respec-
tively, during the whole germination. At the same
germination time, free ferulic acid and protocatechuic
acid contents in untreated GBR were higher than that in
CPP-treated GBR. Additionally, free o-coumaric acid
was not found in either the CPP-treated or untreated
groups. For bound phenolic acids, bound p-coumaric
acid contents in CPP-treated GBR and untreated GBR
were 9.95-19.33 ug/g DW and 36.41-61.57 ug/g DW,
respectively, in the whole germination period. During
whole germination, bound ferulic acid contents in
untreated GBR and CPP-treated GBR were
65.95-104.58 ug/g DW and 48.55-72.86 ug/g DW,
respectively. At the same germination time, bound
ferulic acid and p-coumaric acid levels in untreated
GBR were higher than that in CPP-treated GBR.
Additionally, bound chlorogenic acid was not detected
in either the CPP-treated or untreated groups.

In this study, most of the coumaric acids and ferulic
in GBR were present in bound forms, which was similar
to the findings shown by Zhou et al. (2004). Most free
phenolic acids content in brown rice increased sharply
after germination, which might be due to the activation
of endogenous esterase, thus promoting the production
of free phenolic acids (Tian et al., 2004). Interestingly,
after germination, bound p-coumaric acid and ferulic
acid were significantly boosted. Ti et al. (2014) suggested
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that the increase of bound coumaric acids and ferulic
acids in GBR might be due to polymerization from free
phenolic. The increase of phenylaldehydes ammino-lyase
activity during germination was the main reason to boost
the accumulation of phenolic compounds (Dixon &
Paiva, 1995). Therefore, CPP might inhibit the accumu-
lation of phenolic compounds by passivating key
enzymes activity such as phenylaldehylyase.

3.7 | Changes of flavonoid compositions
in GBR with and without CPP

Eight flavonoid compositions were measured in bound and
free fractions of GBR with and without CPP (Table 4). Free
kaempferol contents in CPP-treated GBR and untreated GBR
were 3.81-4.28 ug/g DW and 10.25-11.44 ug/g DW, respec-
tively, for 18-72 h germination. Free naringenin contents in
CPP-treated GBR and untreated GBR were 18.10-20.44 ug/g
DW, and 24.94-34.74 ug/g DW, respectively, after 18-72h
germination. Free apigenin contents in CPP-treated GBR
and untreated GBR were 2.13-4.01pg/g DW and
8.37-14.78 ug/g DW, respectively, after 18-72 h germination.
At the same germination time, free kaempferol, apigenin,
and naringenin contents in untreated GBR were higher than
that in CPP-treated GBR. For bound flavonoid, bound
naringenin contents in CPP-treated GBR and untreated GBR
were 17.89-18.73ug/g DW and 17.91-28.32ug/g DW,
respectively, after 18-72 h germination. Bound rutin contents
in CPP-treated GBR and untreated GBR were 5.29-8.81 ug/g
DW and 6.25-44.64 ug/g DW, respectively, for 18-72h
germination. At the same germination time, bound rutin
and naringenin in untreated GBR were higher than that in
CPP-treated GBR.

A previous study showed that naringin and kaemp-
ferol levels in millet after germination were significantly
decreased by 63.26 and 36.66 ug/g, respectively, while
apigenin levels were enhanced by 69.28 ug/g (Pradeep &
Sreerama, 2015). This was similar to the results of this
study. It was found that naringin was an important
precursor of flavonoid biosynthesis catalyzed by many
enzymes (Winkel-Shirley, 2001). Therefore, the decrease
of naringin content and the increase of apigenin content
might be caused by the conversion of naringin to
apigenin under the action of flavone synthase enzyme
during brown rice germination. Furthermore, the study
indicated that the content of flavonoids in GBR decreased
under CPP. Suzuki et al. (2002) found that the change of
flavonoid content during seed germination might be
related to the release of bound flavonoid or the
transformation and biosynthesis of flavonoid during seed
germination. Therefore, the activities of key enzymes
such as glucosidase were inhibited and flavonoids were
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decomposed under CPP, thus reducing the content of
flavonoids in GBR.

3.8 | Changes of antioxidant activities in
GBR with and without CPP

The results showed that antioxidant capacity was
increased continuously and then decreased with the
increase of germination time (Table 5). During
whole germination, DPPH antioxidant activities of
free phenolics in untreated GBR and CPP-treated
GBR were 69.33-80.79 umol Trolox/100g DW and
50.42-73.94 umol Trolox/100g DW, respectively. DPPH
antioxidant capacities of bound phenolics in untreated
GBR and CPP-treated GBR were 20.76-32.45 umol Trolox/
100g DW and 21.19-27.61 wmolTrolox/100 g DW, respec-
tively, during the whole germination. DPPH antioxidant
activities of total phenolics in untreated GBR and CPP-
treated GBR were 90.10-113.24 umol Trolox/100g DW
and 72.91-97.77 umol Trolox/100 g DW, respectively, in
the whole germination period. At the same germination
time (18-54h), DPPH antioxidant activities of total,
bound, and free phenolics in untreated GBR were higher
than those in CPP-treated GBR. T-AOC of free phenolics
in CPP-treated GBR and untreated GBR were
27.19-37.79U/100mg DW and 34.99-41.95U/100 mg
DW, respectively, in the whole germination period.
During whole germination, the T-AOC of bound phenolics
in CPP-treated GBR and wuntreated GBR were
6.87-11.06 U/100 mg DW and 4.65-11.68 U/100 mg DW,
respectively. The T-AOC of total phenolics in CPP-treated
GBR and untreated GBR were 35.75-47.00 U/100 mg DW
and 39.65-51.05 U/100 mg DW, respectively, in the whole
germination period. At the same germination time
(36-72h), T-AOC of total and free phenolics in untreated
GBR were higher than those in CPP-treated GBR.
Cevallos-Casals and Cisneros-Zevallos (2010) demon-
strated that germinated grains were an excellent source
of phenolic antioxidants. Yodpitak et al. (2019) observed
that the antioxidant activity of phenolics in six kinds of
GBR indicated a trend of first enhancing, then gradually
decreasing during germination. Additionally, Chen et al.
(2016) reported an enhancement in DPPH antioxidant
activity of phenolic in GBR during germination (0-24 h).
CPP reduced the antioxidant capacity of phenolic in
GBR, which coincided with the findings of Zargarchi and
Saremnezhad (2019), who reported that the DPPH
clearance rate of phenolic in germinated paddy was
decreased by 10% after CPP. In this study, the changes of
DPPH free radical scavenging and T-AOC of GBR were
consistent with the changes of phenolic content. There-
fore, the activities of PAL and other key enzymes
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TABLE 5 Changes in the DPPH and T-AOC antioxidant activities of free, bound, and total phenolic extracts from untreated and cold

plasma-pretreated germinated brown rice during 72 h germination

DPPH (umolTrolox/100 g DW)

T-AOC (U/100 mg DW)

Sample Time (h) Free Bound Total Free Bound Total

UGBR Control 60.45 + 1.359F 13.01 + 1.50°% 73.46 +2.77°F¢  27.27 +0.99°¢ 5.01+027F 3228+ 1.04°H
18 80.79 +1.86™"  3245+1.45*  113.24+3.30* 34.99 + 0.61%° 4.65+0.15°°  39.65 + 0.739FF
36 7518 +2.56°5  29.44 +1.98°8 104.62 + 2.74"® 41.95+047**  910+0.14°°  51.05+0.35%
54 71.47 +1.46°°®  23.46 +0.45°P 94.93+1.07°°®  3824+0.26®  11.68+0.17°*  49.91+0.13%
72 69.33+1.93®  20.76 +1.57%° 90.10 + 3.50°F 36.56 + 0.21°¢ 7.02+0.06F  43.58 +0.18°

CPPGBR  Control 59.09 + 1.36°F 12.94 + 1.44°F 72.03 + 1.14%¢ 27.67 +0.80%° 4.424019°¢  32.09 + 0.89°
18 63.57 +1.68°5  27.61 +1.54°" 91.18 +3.23°°F  2013+0.21F  11.06 +0.10°®  40.19 +0.28F
36 73.94 +1.53°5C  23.83+1.84°C 97.77 + 3.19°C 31.78 + 0.32°F 6.87+0.19°E  38.65 + 0.49F
54 55.91+1.75%¢  21.19+1.24°®  77.10 +2.68F 37.79 +0.29°8 9.21+0.12°¢  47.00 + 0.40*°
72 50.42+1.53°1  2249+1.88°® 7291 +1.83%FC  27.19+0.579C 8.55+0.27° 3573 +0.83%

Note: Values are presented as mean =+ standard deviation (n = 4). Different lowercase letters indicate significant differences of the data among the different
germination hours in the same group (UGBR group or CPPGBR group) (p <.05), and different capital letters indicate significant differences in the same

column (p <.05).

Abbreviations: CPPGBR, germinated brown rice with cold plasma pretreatment; DW, dry basis weight; T-AOC, total antioxidant capacity; UGBR, germinated

brown rice without cold plasma pretreatment.

decreased under CPP, thus reducing the content of
phenolic in GBR.

4 | CONCLUSIONS

The study evaluated the impact of CPP of brown rice on
GABA, phytase, phytic acid, flavonoids, phenolics,
y-oryzanol, and antioxidant capacity in GBR. These
results indicated that the levels of y-oryzanol and GABA
in CPP (400 W, 5min) treated GBR were the highest at
germination time 36 and 72h, respectively, which were
higher than those in untreated GBR. However, under the
same conditions of cold plasma treatment, the levels of
phytic acid, flavonoids, phenolics, and antioxidant
capacity in CPP (400 W, 5min) treated GBR were the
lowest at germination time was 72 h, which were lower
than those of untreated GBR. Accordingly, the applica-
tion of CPP for the germination of brown rice may be a
novel approach to degrade phytic acid and improve
GABA and y-oryzanol in brown rice.
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