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Abstract
Niudali (Callerya speciosa) is commonly grown in southeastern regions of China and 
consumed as a food ingredient. Although Niudali root extracts showed various bi-
ological activities, the hepatoprotective effects of Niudali root phytochemicals are 
not fully studied. Herein, we prepared two Niudali root aqueous extracts, namely, c 
and Niudali polysaccharides- enriched extract (NPE), and identified an alkaloid, (hypa-
phorine) in NEW. The hepatoprotective effects of NWE, NPE, and hypaphorine were 
evaluated in an acute liver injury model induced by carbon tetrachloride (CCl4) in mice. 
Pathohistological examination and blood chemistry assays showed that treatment of 
NWE, NPE, and hypaphorine alleviated CCl4- induced liver damage by lowering the 
liver injury score (by 75.51%, 80.01%, and 41.22%) and serum aspartate and alanine 
transaminases level (by 63.24%, 85.22%, and 49.74% and by 78.73%, 80.08%, and 
81.70%), respectively. NWE, NPE, and hypaphorine also reduced CCl4- induced he-
patic oxidative stresses in the liver tissue by decreasing the levels of malondialdehyde 
(by 40.00%, 51.25%, and 28.75%) and reactive oxygen species (by 30.22%, 36.14%, 
and 33.54%) while increasing the levels of antioxidant enzymes including superoxide 
dismutase (by 21.36%, 21.64%, and 8.90%), catalase (by 22.13%, 33.33%, and 5.39%), 
and glutathione (by 84.87%, 90.65%, and 80.53%), respectively. Mechanistic assays 
showed that NWE, NPE, and hypaphorine alleviated liver damage by mediating in-
flammatory biomarkers (e.g., pro- inflammatory cytokines) via the signaling pathways 
of mitogen- activated protein kinases and nuclear factor- κB. Findings from our study 
extend the understanding of Niudali's hepatoprotective effects, which is useful for its 
development as a dietary intervention for liver inflammation.
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1  |  INTRODUC TION

The liver is a major organ with vital biological functions including 
the biosynthesis of essential proteins and biochemicals for digestion 
and growth. It is also the largest organ for the detoxification of ex-
ogenous detrimental substances by producing toxin- metabolizing 
enzymes to convert harmful xenobiotics into low- toxic metabo-
lites (Ben Hsouna et al., 2023; Ben Hsouna, Hfaiedh, et al., 2022). 
Numerous free radicals, such as reactive oxygen species (ROS) and 
reactive nitrogen species (RNS), are generated during the detoxifica-
tion process (Forrester et al., 2018; Fransen et al., 2012). Although 
these free radicals are important molecules involved in cellular de-
fense mechanisms against pathogens, excessive ROS can lead to 
hepatic cells and tissue damage (Ben Hsouna, Dhibi, et al., 2022). 
Among the xenobiotics, carbon tetrachloride (CCl4), an industrial 
substance as a dry- cleaning agent or a fire suppressant, is a potent 
chemical toxin that can induce severe liver damage by triggering 
the cytochrome P450 enzymes in the liver to generate a specific 
type of ROS, namely, trichloromethyl and proxy chloromethyl free 
radicals (Ben Hsouna, Dhibi, Dhifi, Mnif, et al., 2019; Ben Hsouna, 
Gargouri, Dhifi, Ben Saad, et al., 2019; Ben Hsouna, Gargouri, Dhifi, 
& Saibi, 2019; Hsouna et al., 2019). Moreover, CCl4- induced oxida-
tive stress can trigger a series of immune responses including the 
secretion of pro- inflammatory cytokines such as interleukins (ILs), 
tumor necrosis factor- alpha (TNFα), and nuclear factor kappa B 
(NF- κB) (Gupta et al., 2022). Thus, CCl4- induced liver damage is a 
well- established experimental model for the biological assessment 
of acute inflammatory liver diseases.

The hepatoprotective effects against CCl4- induced liver dam-
age by natural products are supported by numerous published 
studies (Pan et al., 2020; Parthasarathy & Evan Prince, 2021; 
Ugwu & Suru, 2021). Different classes of dietary natural products 
may modulate the endogenous antioxidant system to ameliorate 
toxins- induced liver damage. For instance, silymarin, a group of 
flavonolignans (including silibinin) from the medicinal plant milk 
thistle (Silybum marianum), was reported to exert liver protective 
effects by counteracting alcohol- induced enzyme activity changes 
for SOD, glutathiones- transferase (GST), CAT, glutathione reduc-
tase (GR), and GPx in a rodent model (Das & Vasudevan, 2006). 
In addition, similar hepatoprotective effects were reported from 
other chemotypes of dietary natural products such as polysaccha-
rides. Treatment with water- soluble apple peel polysaccharides 
(250 and 500 mg/kg body weight/per day) reduced CCl4- induced 
hyperactivity of oxidative enzymes (i.e., serum alanine aminotrans-
ferase, aspartate aminotransferase, and lactic dehydrogenase) 
in a mice model (Yang et al., 2013). Additionally, alkaloids from 
medicinal plants, such as curry leaves (Murraya koenigii) (Sangale 
& Patil, 2017) and Jerusalem cherry (Solanum pseudocapsicum) 
(Sangale & Patil, 2017), were also reported to confer hepatopro-
tective effects against CCl4- induced liver injuries in rats. Our 
previously reported study identified a diverse group of bioactive 
compounds including polyphenols, alkaloids (such as hypaphorine), 
terpenoids, and polysaccharides. We also reported the extraction 

and chemical characterization of crude polysaccharides from a hot 
water extract of Niudali. Moreover, the Niudali water extract was 
shown to exert alleviative effects against metabolic disorders and 
gut microbiota dysbiosis in a mice model (Li et al., 2022). However, 
bioactive phytochemicals from Niudali with hepatoprotective are 
not fully elucidated. Herein, we aim to evaluate whether a Niudali 
water extract (NWE) and Niudali polysaccharides- enriched ex-
tract (NPE), and identified an alkaloid, (hypaphorine) can protect 
the liver from CCl4- induced acute liver injury in mice. Furthermore, 
possible mechanisms of action of them were explored by assessing 
their modulatory effects on a series of molecular targets including 
enzymes and signaling pathways using in vivo assays.

2  |  MATERIAL S AND METHODS

2.1  |  Materials

The roots of C. speciosa were purchased from a local market 
(Jiangmen, Guangdong, China) and air- dried. The dried root material 
(100 g) was extracted with distilled water at 100°C twice (with 10 
volumes of water for 1 h each time). The aqueous extract of C. spe-
ciosa roots was filtered, concentrated, and freeze- dried to afford 
a Niudali water extract (NWE) with a yield of 17.65%. Apart from 
NWE, two samples including a polysaccharides- enriched extract 
further purified from NWE (Niudali polysaccharides extract; NPE) as 
we reported (Li et al., 2022) and hypaphorine, an indole alkaloid that 
was previously isolated from C. speciosa roots (Dongli; Li et al., 2021), 
were included in this study.

2.2  |  Determination of total carbohydrate and 
hypaphorine content in NWE

The chemical constituents, including the content of total carbohy-
drate and hypaphorine of NWE, were characterized. First, the total 
carbohydrate content of NWE was determined by a colorimetric 
(phenol- sulfuric acid) method using glucose as a standard curve 
(Chen & Huang, 2018). Briefly, 20.0 mg of NWE was accurately 
weighed and dissolved with distilled water to obtain an NWE solu-
tion at a concentration of 0.1 mg/mL. This NWE solution (200 μL) 
was mixed with phenol- sulfuric acid reagent, and the mixture was 
kept at room temperature for 20 min. Distilled water was used as 
a blank control, and the absorbance of the reaction products was 
measured at a wavelength of 490 nm to determine the carbohydrate 
content.

The hypaphorine level of NWE was determined by a chromato-
graphic method performed on a Waters UPLC H- class system cou-
pled with a DAD detector. The separation of NWE was achieved 
on an ACQUITY- UPLC- BEH- C18 column (100 × 2.1 mm; 1.7 μm) at 
a flow rate of 0.3 mL/min with a detection wavelength of 218 nm. 
The gradient elution system consisting of solvent A (water) and 
solvent B (acetonitrile) was set as follows: 0– 3 min, 0%– 20% B; 
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7028  |    ZHANG et al.

3– 4.5 min, 20%– 40% B; 4.5– 6 min, 40%– 60% B; 6– 8 min, 60% B; 
8.05– 10 min, 0% B. The injection volume for each analysis was 1 μL 
and the temperature of the column was kept at 30°C. All samples 
were filtered through a membrane filter (0.22 μm).

2.3  |  Establishment of a murine liver injury model

All procedures in the animal experiments were conducted in ac-
cordance with the Animal Care and Use Guidelines of Tea Research 
Institute Guangdong Academy of Agricultural Sciences, and ap-
proved by the Institutional Animal Care and Use Committee. Male 
C57BL/6 mice (aged 7 weeks) were purchased from the Dien Gene 
Technology Co. Ltd. (Guangzhou, Guangdong, China) and housed 
at an environment of 60%– 70% humidity and room temperature 
(22 ± 2°C) under a 12 h light/dark cycle. Food and water were 
provided ad libitum. After 1 week of acclimatization, 8- week- old 
mice (60) were randomly assigned to six groups (n = 10 each): (1) 
control group (normal), (2) model group (exposed to CCl4), and 
treatment groups including (3) CCl4 + silymarin (100 mg/kg/
body weight; positive control), (4) CCl4 + NWE (500 mg/kg/body 
weight), (5) CCl4 + NPE (50 mg/kg/body weight), and (6) CCl4 + hy-
paphorine (20 mg/kg/body weight). On the first day of the ex-
periment, the model and treatment groups were intraperitoneally 
injected with a CCl4 solution (2%) dissolved in maize oil to induce 
liver injury. On day 2, mice in the treatment groups were admin-
istrated samples by gavage once a day for 3 days, and the con-
trol and model groups received the same volume of water. Two 
hours after the last treatment, the body weights of the mice were 
measured before their euthanization. Blood and liver were col-
lected for further analysis. The wet weight of the liver tissues was 
weighed, and the liver index of each sample was calculated by the 
following formula: liver index (%) = liver wet weight/mouse body 
weight ×100%.

2.4  |  Assessment of liver injury

The severity of the liver injury was scored from one to five according 
to the degree of necrosis, coagulative central area, and focal. The de-
gree of lesions was assessed from one to five depending on severity: 
a score of 0 for normality, 1 for minimal (<1%), 2 for slight (1%– 25%), 
3 for moderate (26%– 50%), 4 for moderate/severe (51%– 75%), and 5 
for severe (76%– 100%) (Wu et al., 2019).

2.5  |  Histological staining

The fixed liver tissues were cut into blocks (3 mm3) and embedded in 
paraffin. The tissue blocks were cut into 5 μm thick sections with a 
paraffin microtome (Leica, Switzerland), which were then deparaffi-
nized twice with xylene (Damao, Tianjin, China) and subsequently 
rehydrated with 100%, 95%, 80%, and 70% of aqueous ethanol 

(Damao, Tianjin, China). The consecutive sections were stained with 
staining agents including hematoxylin and eosin (H&E) (Shanghai 
Beyotime Biotechnology) and Masson trichromic (Solarbio, Beijing, 
China) according to the manufacturer's instructions. The stained 
sections were dehydrated (with 95% and 100% ethanol), washed 
twice with xylene, sealed with neutral resin, and observed under a 
light microscope (Olympus, Japan).

2.6  |  Blood biochemical assays

Frozen liver tissues were thawed and homogenized in physiologi-
cal saline solution on ice using a homogenizer (OMNI Bead Ruptor 
24, America) and centrifuged at 2500 rpm and 4°C for 10 min. The 
protein content in the supernatant was measured using the Pierce 
BCA protein assay kit (Thermo VK312556, America). The levels of 
biomarkers including alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), malondialdehyde (MDA), catalase (CAT), 
superoxide dismutase (SOD), and glutathione (GSH) (Jiancheng 
Company; Nanjing, China) were measured using specific assay kits 
according to the manufacturer's instructions. The reactive oxygen 
species (ROS) level was measured using an ELISA kit (Meimian; 
Jiangsu, China).

2.7  |  Immunohistochemistry (IHC) assay

The paraffin sections of tissues were incubated with H2O2 (3%; 
Solarbio; Beijing, China) to quench the endogenous peroxidases 
and then kept at 4°C in ethylene diamine tetraacetic acid (EDTA) 
(Solarbio) to unmask the antigens. After blocking with goat serum 
(5%; Solarbio) for 30 min, the sections were incubated with primary 
antibodies of interleukin- 6 (IL- 6), cyclooxygenase- 2 (COX- 2), tumor 
necrosis factor- α (TNF- α), nitric oxide synthase (iNOS), phospho- 
NF- κB- p65 (Ser536), nuclear factor kappa- B (NF- κB), and inhibitor 
of NF- κB (IκB) for overnight at 4°C. The sections were then probed 
with the respective secondary antibody for 1 h, followed by add-
ing the streptavidin- biotin complex (SABC) reagent (Beyotime 
Biotechnology, Shanghai, China) for 30 min. After the staining 
development with diaminobenzidine (DAB) (Shanghai Beyotime 
Biotechnology) for 2 to 5 min, the sections were counterstained 
with hematoxylin (Shanghai Beyotime Biotechnology) for 90 s, and 
then dehydrated through an ethanol gradient (80%– 100%), cleared 
with xylene, mounted with neutral resin, and observed under a light 
microscope (Olympus, Japan).

2.8  |  Western blotting assays

The liver tissues were homogenized in the RIPA lysis buffer (Shanghai 
Beyotime Biotechnology) and kept in an ice bath for 1 h followed by 
centrifugation at 4°C for 20 min at 13,200 rpm. The protein content in 
the supernatants was measured using the Pierce BCA protein assay 

 20487177, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fsn3.3626 by C

ochraneC
hina, W

iley O
nline L

ibrary on [28/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7029ZHANG et al.

kit (Thermo VK312556). An equal amount of protein per sample 
was boiled in the SDS- PAGE loading buffer (4× with DTT) for 5 min, 
and 20 μL of the protein solution was used for the display of SDS- 
PAGE. The protein bands were transferred to the PVDF membranes 
(Millipore; Burlington, MA, USA), and blocked with skim milk (5%) or 
BSA in TBST (Tris- buffered saline containing 0.1% of tween- 20) at 
room temperature for 2 h. The blots were incubated with primary 
antibodies against IL- 6, COX- 2, TNF- α, iNOS, p- NF- κB, and IκBα, 
phospho- p44/42 MAPK (Erk1/2), p44/42 mitogen- activated protein 
kinase (p44/42 MAPK), phospho- p38 MAPK (Thr180/Tyr182), p38 
mitogen- activated protein kinase (p38 MAPK), Phospho- SAPK/JNK 
(Thr183/Tyr185), c- Jun N- terminal kinase (JNK), B- cell lymphoma-
 2 (Bcl- 2), BCL2- associated X protein (Bax), and β- actin separately 
for overnight at 4°C. After washing with TBST (5 min) three times, 
the membrane was incubated with the secondary antibody (KPL) 
for 50 min. The bands were developed in the dark for 2 min and im-
aged using a chemiluminescence gel imaging system (Tanon 5200; 
Shanghai, China).

2.9  |  Statistical analysis

All data are presented as the mean ± SEM of at least three independ-
ent experiments. The Shapiro- Wilk normality test was used to assess 
the distribution of the data. When the data showed a normal distri-
bution, parametric tests were used. The means were compared by 
one- way ANOVA followed by Dunnett's test using GraphPad Prism 
8.0 for Windows (GraphPad Software Inc.). For data that showed 
a non- normal distribution, the Kruskal- Wallis test was used. When 
the p- value was less than .05, the difference between groups was 
considered statistically significant.

3  |  RESULTS

3.1  |  Quantitation of total carbohydrate and 
hypaphorine contents in NWE

A standard curve with glucose as a standard was obtained for the 
phenol- sulfuric acid method (with a linearity of R2 = 0.9992), and the 
total carbohydrate content of NWE was determined to be 43.1%. 
The HPLC- UV profiles of the hypaphorine standard and NWE are 
shown in Figure 1. Hypaphorine in NWE was identified by compari-
son of the retention time of the hypaphorine standard. A calibration 
curve with a linearity of R2 = 0.9999 was obtained, and the level of 
hypaphorine in NWE was determined as 0.54% (Table 1).

3.2  |  C. speciosa extracts ameliorated CCl4- induced 
liver injury

Exposure to CCl4 induced liver damage in mice, as the liver tissues 
were enlarged and lusterless as compared to the mouse liver tis-
sues in the control group (See Figure S1). The liver damage was 
alleviated by the treatments with NWE, NPE, and hypaphorine, as 
the liver tissue appeared normal. To quantitatively assess NWE’ 
and NPE's effects on liver functions, histological examinations of 
the AST and ALT levels in the liver tissues were performed. As 
shown in Figure 2a, the liver tissue of mice in the control group 
was intact, as the hepatic lobules were clear and hepatocytes were 
regularly arranged. The mouse liver function was disrupted by the 
exposure to CCl4, which led to significant liver damage, includ-
ing massive hepatic necroses, cell swelling, disappearing hepato-
cyte architecture, and infiltrated inflammation around the central 

F I G U R E  1  UPLC- UV profiles of the standard of hypaphorine (a) and a water extract of C. speciosa roots (NWE) (b). Detection wavelength: 
218 nm; Retention time of hypaphorine was 4.24 min.
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venous lesions. In contrast, treatments with NWE, NPE, and hy-
paphorine ameliorated CCl4- induced liver injury, as evidenced 
by the histopathological characteristics. Furthermore, the liver 
injury score showed that treatments with NWE, NPE, and hypa-
phorine had liver protective effects against CCl4- induced injury 
(Figure 2b). The staining of liver fibrosis with Masson trichrome 
(for visualization of collagen fibers; Figure S2) showed patho-
logical changes, including interstitial fibrosis, in the CCl4- exposed 
model group. Treatment with NPE exhibited a reduction of cel-
lular degeneration and fibrosis, while the NWE and hypaphorine 
treatments were inactive. Apart from the histological staining, 
data from the biochemical assays measuring the levels of ALT and 
AST supported the hepatoprotective effects. The levels of serum 
ALT and AST were elevated in the CCl4- exposed group compared 
to the control group (45.99 vs. 401.41 U/L for ALT and 25.20 vs. 
204.82 U/L for AST). Treatment with NWE, NPE, and hypaphorine 
suppressed CCl4- elevated levels of serum ALT and AST by 63.24%, 
85.22%, and 49.74% and by 78.73%, 80.08%, and 81.70%, respec-
tively (Table 2).

3.3  |  C. speciosa extracts alleviated CCl4- induced 
oxidative stress in mice's liver

Insult with CCl4 significantly increased the levels of MDA, an indica-
tor of lipid peroxidation, in the liver tissues from 0.26 to 0.80 nmol/
mg compared to the control group. Treatment with NWE, NPE, and 
hypaphorine counteracted CCl4- induced changes by reducing the 
MDA level to 0.48, 0.39, and 0.57 nmol/mg, respectively (Table 3). 
A similar trend was observed in an oxidative stress indicator (i.e., 
ROS) in the liver tissue. Exposure to CCl4 led to an increased pro-
duction of ROS (from 25.89 to 40.40 U/mg), which was ameliorated 
by the treatment of NWE, NPE, and hypaphorine (30.22%, 36.14%, 
and 33.54%, respectively; Table 3). Moreover, NWE, NPE, and hy-
paphorine restored CCl4- decreased levels of antioxidant enzymes 
including CAT, SOD, and GSH by 22.13%, 33.33%, and 5.39%, by 
21.36%, 21.64%, and 8.90%, and by 84.87%, 90.65%, and 80.53%, 
respectively (Table 4).

3.3.1  |  Speciosa extracts regulate the 
inflammatory and apoptotic pathways

To explore whether C. speciosa extracts alleviated inflammation by 
inhibiting the NF- κB pathway, the protein levels of inflammatory 
biomarkers including IL- 6, COX- 2, TNF- α, iNOS, p- NF- κB, and IκBα 
were determined by immunohistochemistry and western blotting. 

TA B L E  1  Total carbohydrate and hypaphorine content in water 
extract of C. speciosa roots (NWE).

Sample Standard curve R2 Content (%)

Total carbohydrate y = 9.8848x + 0.0117 0.9992 43.10

Hypaphorine y = 22,932x − 939.6 0.9999 0.54

F I G U R E  2  Effects of C. speciosa 
roots on CCl4- induced histopathological 
examination of liver tissue. The 
histopathological observation of 
hematoxylin and eosin (H&E)- stained liver 
tissue slices (200×) (a). Liver injury was 
analyzed by the liver injury scoring system 
(b). Data are expressed as the mean ± SEM 
of at least three independent experiments 
(n ≥ 5). ####p < .0001 compared to the 
control group; ****p < .0001 compared to 
the model group.
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    |  7031ZHANG et al.

As shown in Figures 3 and 4, intraperitoneal injection of CCl4 sig-
nificantly increased the expression levels of IL- 6, COX- 2, TNF- α, 
iNOS, p- NF- κB and decrease IκBα in the inflamed regions of the 
liver. However, treatment with C. speciosa extracts inhibited the 
CCl4- induced upregulation of IL- 6, COX- 2, TNF- α, iNOS, p- NF- κB 
and downregulation of IκBα at different degrees compared with the 
model group.

Insult with CCl4 significantly increased the expression levels (rel-
ative intensity) of IL- 6, COX- 2, TNF- α, and iNOS in the inflamed re-
gions of the liver tissue from 0.37 to 0.66, 0.33 to 0.49, 0.48 to 0.84, 
and 0.21 to 0.51, respectively (Figure 5). The protein expression of 
p- NF- κB increased from 0.23 to 0.77 while the IκBα level decreased 

from 0.45 to 0.24, respectively by the stimulation of CCl4 in the 
western blot assay (Figure 5). These inflammatory markers were 
downregulated by the treatment of NWE, NPE, and hypaphorine 
by 50.00%, 57.58%, and 48.48% for IL- 6, by 40.82%, 36.73%, and 
26.53% for COX- 2, by 8.33%, 51.19%, and 6.00% for TNF- α, by 
27.45%, 39.21%, and 13.72% for iNOS, respectively. Treatment with 
NWE, NPE, and hypaphorine downregulated the expression of p- 
NF- κB by 45.45%, 64.94%, and 35.06%, while upregulating the ex-
pression of IκBα by 75.00%, 87.50%, and 87.50%, respectively, as 
compared to the CCl4- insulted group (Figure 5).

Mitogen- activated protein kinases (MAPKs) signaling pathways 
play a critical role in the regulation of inflammatory responses and 
in coordinating the induction of many gene- encoding inflammatory 
biomarkers (Zhang & Liu, 2002). The MAPK pathways are mediated 
by several protein kinases, including ERK1/2, p38, and JNK. Thus, 
western blot assays were used to evaluate C. speciosa extracts' ef-
fects on interfering with the MAPK pathways. The effects of C. spe-
ciosa extracts on phosphorylation of ERK1/2, p38, and JNK were 
also analyzed. Phosphorylation of ERK1/2, p38, and JNK were el-
evated in the CCl4- exposed group as their relative intensities in the 
western blot assay changed from 0.20 to 0.45, 0.36 to 0.56, and 0.51 
to 1.18, respectively (Figure 6). Treatment of NWE and NPE reduced 
the phosphorylation levels of ERK1/2, p38, and JNK by 40.00% and 
55.56%, 25.00%, and 37.50%, and 50.85% and 48.31%, while hypa-
phorine treatment inhibited the phosphorylation of JNK by 33.05% 
(Figure 6).

Furthermore, treatment of C. speciosa extracts also alleviated 
CCl4- triggered apoptosis in liver cells. Exposure to CCl4 resulted 
in upregulated expression of a pro- apoptotic protein (i.e., Bax) 
and downregulated an anti- apoptotic protein (i.e., Bcl- 2) from 0.19 
to 0.63 and from 0.89 to 0.48, respectively (relative intensity) 
(Figure 7). Treatment with NWE, NPE, and hypaphorine counter-
acted the apoptotic changes by inhibiting the expression of Bax by 
33.33%, 42.86%, and 20.63%, and promoting the level of Bcl- 2 by 
68.75%, 106.25%, and 77.08% (Figure 7).

4  |  DISCUSSION

Reported studies showed that Niudali extracts can confer liver pro-
tective effects against CCl4- induced inflammation in animal models. 

Group CAT (U/mg protein) SOD (U/mg protein)
GSH (μmol/g 
protein)

Control 21.71 ± 0.44 110.10 ± 4.45 41.14 ± 2.30

Model 14.10 ± 0.10#### 78.31 ± 3.43#### 26.96 ± 1.23####

Silymarin 21.18 ± 0.34**** 84.13 ± 1.77 43.60 ± 2.26****

NWE 17.22 ± 0.77**** 95.04 ± 4.18* 49.84 ± 1.42****

NPE 18.80 ± 0.48**** 95.26 ± 1.79* 51.41 ± 1.81****

Hypaphorine 14.86 ± 0.39 85.28 ± 3.02 48.67 ± 1.41****

Note: Data are expressed as the mean ± SEM of independent experiments (n ≥ 5). ####p < .0001 as 
compared to the control group; *p < .05 and ****p < .0001 as compared to the model group.

TA B L E  4  Effects of C. speciosa root 
extracts on the level of antioxidants CAT, 
SOD, and GSH in the liver tissues of CCl4- 
exposed mice.

TA B L E  3  Effects of C. speciosa extracts on the level of MDA and 
ROS.

Group
MDA (nmol/mg 
protein)

ROS (U/mg 
protein)

Control 0.26 ± 0.02 25.89 ± 2.15

Model 0.80 ± 0.03#### 40.40 ± 1.87###

Silymarin 0.45 ± 0.03**** 29.28 ± 1.56**

NWE 0.48 ± 0.03**** 28.19 ± 2.55**

NPE 0.39 ± 0.02**** 25.80 ± 2.26***

Hypaphorine 0.57 ± 0.03**** 26.85 ± 2.40***

Note: Data are expressed as mean ± SEM of independent experiments 
(n ≥ 5). ###p < .001 and ####p < .0001 as compared to the control group; 
**p < .01, ***p < .001, and ****p < .0001 as compared to the model group.

TA B L E  2  Effects of C. speciosa root extracts on the levels of ALT 
and AST in the serum of mice exposed to CCl4.

Group ALT (U/L) AST (U/L)

Control 45.99 ± 6.83 25.20 ± 4.40

Model 404.41 ± 40.48#### 204.82 ± 17.43####

Silymarin 81.59 ± 9.49**** 58.16 ± 2.78****

NWE 147.50 ± 22.57**** 43.57 ± 4.41****

NPE 59.32 ± 5.35**** 40.80 ± 2.09****

Hypaphorine 201.80 ± 17.99**** 37.48 ± 4.82****

Note: Data are expressed as the mean ± SEM of independent 
experiments (n ≥ 5). ####p < .0001 as compared to the control group; 
****p < .0001 as compared to the model group.
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For instance, a hot water extract of Niudali showed hepatoprotec-
tive effects by ameliorating CCl4- elevated serum ALT and AST 
levels and reducing the MDA content in mouse liver tissues (Zhou 
et al., 2009). However, the active compounds in the Niudali water 

extract that may have contributed to the liver- protective effects 
were not identified. Although extensive phytochemical investiga-
tion revealed that phenolic compounds are one of the major con-
stituents of Niudali (Zhang et al., 2022), several different classes 

F I G U R E  3  Immunohistochemical 
staining with IL- 6, COX- 2, TNF- α, and 
iNOS in the liver tissues of CCl4 treated 
mice. Representative IHC images of 
tissue sections showing in situ expression 
of IL- 6, COX- 2, TNF- α, and iNOS (a). 
Quantification of IL- 6, COX- 2, TNF- α, and 
iNOS levels (b). Data are expressed as the 
mean ± SEM of at least three independent 
experiments (n ≥ 5). ###p < .001 and 
####p < .0001 compared to the control 
group; *p < .05, **p < .01, ***p < .001, and 
****p < .0001 compared to the model 
group.

F I G U R E  4  Immunohistochemical 
staining with p- NF- κB and IκBα in 
the liver tissues of CCl4 treated mice. 
Representative IHC images of tissue 
sections showing in situ expression of 
p- NF- κB and IκBα (a). Quantification of 
p- NF- κB and IκBα levels (b). Data are 
expressed as mean ± SEM of at least 
three independent experiments (n ≥ 5). 
###p < .001 and ####p < .0001 compared 
to the control group; *p < .05, **p < .01, 
***p < .001, and ****p < .0001 compared to 
the model group.
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of phytochemicals, such as alkaloids and polysaccharides, are com-
monly found in Niudali (Zhang et al., 2021). It is possible that these 
chemotypes of compounds also contribute to the overall biologi-
cal effects of Niudali. Indeed, apart from phenolics (including phe-
nolic acids and flavonoids), triterpene saponins (e.g., oleanane- type 
triterpenoids) (Wang et al., 2021), alkaloids (e.g., indole, cularine, 
haplopine, and sanguinarine), and polysaccharides (consisting of 
monosaccharides including glucose, arabinose, galactose, rham-
nose, and galacturonic acid) (Li et al., 2022) have been identified 
from Niudali extracts. Notably, the triterpene saponin- enriched 
Niudali extract showed anti- inflammatory activity by reducing 
the levels of pro- inflammatory cytokines, including IL- 1β and IL- 6 

in the liver tissue of high- fat diet (HFD)- stimulated mice (Wang 
et al., 2021). Additionally, polysaccharides from Niudali showed 
hepatoprotective effects by ameliorating HFD- induced liver steato-
sis and inflammation (Li et al., 2022). However, whether polysaccha-
rides and alkaloids from Niudali extract can exert hepatoprotective 
effects on CCl4- induced liver damage in a mouse model was not 
well characterized. Therefore, to better understand the hepatopro-
tective effects of Niudali's phytochemical constituents, we con-
ducted this study to (1) prepare a polysaccharides- enriched Niudali 
extract (i.e., NPE), (2) identify an alkaloid, namely, hypaphorine, in 
NWE compared to the hepatoprotective effects of NWE, NPE, and 
hypaphorine in a CCl4- induced liver damage model.

F I G U R E  5  The effect of C. speciosa 
roots on the CCl4- induced inflammatory 
response in mice. Immunoblot showing 
expression levels of IL- 6, COX- 2, TNF- α, 
iNOS, p- NF- κB, NF- κB, IκBα, and 
β- Actin (a). IL- 6, COX- 2, TNF- α, iNOS, 
and IκBα normalized to β- Actin, p65 
NF- κB normalized to NF- κB (b). Data are 
expressed as the mean ± SEM of at least 
three independent experiments (n ≥ 3). 
##p < .01, ###p < .001 and ####p < .0001 
compared to the control group; *p < .05, 
**p < .01, ***p < .001 and ****p < .0001 
compared to the model group.
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F I G U R E  6  Effect of C. speciosa roots on 
the CCl4- induced inflammatory response 
in mice. Immunoblot showing expression 
levels of p- Erk, Erk, p- p38, p38, p- JNK, 
JNK, and β- Actin (a). p- Erk normalized 
to Erk, p- p38 normalized to p- 38, p- JNK 
normalized to JNK (b). Data are expressed 
as the mean ± SEM of at least three 
independent experiments (n ≥ 3). ##p < .01 
and ####p < .0001 compared to the control 
group; *p < .05, **p < .01, ***p < .001, and 
****p < .0001 compared to the model 
group.

F I G U R E  7  Effect of C. speciosa roots 
on the expression of apoptosis genes in 
the liver tissues of CCl4- induced mice. 
Immunoblot showing expression levels 
of Bax, Bcl- 2, and β- Actin (a). Bax, Bcl- 2 
normalized to β- Actin (b). Data are 
expressed as the mean ± SEM of at least 
three independent experiments (n ≥ 3). 
####p < .0001 compared to the control 
group; *p < .05, **p < .01****p < .0001 
compared to the model group.
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Acute liver injury induced by CCl4 is associated with the acti-
vation of inflammatory processes, oxidative stress, and apoptosis 
(Al- Sayed et al., 2019; Sun et al., 2022). In general, treatment with 
NWE, NPE, and hypaphorine all showed liver protective effects, as 
evidenced by data from the histopathological evaluation (liver injury 
score) and the blood chemical assays (ALT and AST level) (Table 2). 
Reactive oxygen species (ROS) play an important role in regulating 
physiological and pathophysiological signals. Excessive ROS can lead 
to oxidative damage, lipid peroxidation, cell membrane damage, deg-
radation, and DNA damage in liver cells (Schraufstatter et al., 1988). 
ROS activates the NF- κB response to inflammatory agonists and 
encodes pro- inflammatory cytokines by degrading iκB- α and acti-
vating phosphorylation of NF- κB p65/p50 (Ramadan et al., 2023). 
The MAPK signaling pathway is also known to be critical for the 
expression of proinflammatory mediators. Excessive ROS induced 
by CCl4 can activate the MAPK signaling pathways (Liu et al., 2012). 
Therefore, inhibition of MAPK activation is a possible strategy for 
the prevention and treatment of liver injury. Compared with the 
model group, the expression of NF- κB/MAPK signaling pathway- 
related proteins was significantly reduced in the NWE and NPE 
groups. These results suggest that water extracts of C. speciosa roots 
may regulate the MAPK/NF- κB pathway to alleviate liver injury. This 
is supported by studies showing that enzymes including SOD, CAT, 
and GSH are able to detoxify cellular peroxides (Zhang et al., 2023). 
The elevated level of a metabolite from lipid peroxidation, namely, 
MDA, is an indicator of liver damage induced by oxidative stress (Seki 
et al., 2002). This stress can also be ameliorated by several antioxida-
tive defensive enzymes, including CAT, SOD, and GSH by scaveng-
ing lipid peroxides and oxygen- free radicals (Glade & Meguid, 2017). 
Treatment with NWE, NPE, and hypaphorine showed liver protec-
tive effects in the antioxidant assays measuring the MDA, ROS, and 
GSH levels (Tables 3 and 4). This suggests that Niudali extracts may 
protect the liver from CCl4- induced damage by exerting antioxidant 
effects. Therefore, NWE, NPE, and hypaphorine all showed anti-
oxidant effects against CCl4- induced liver damage, with NPE being 
the most active Niudali extract, followed by NWE and hypaphorine. 
Notably, hepatocytes from damaged liver tissue are susceptible 
to various forms of cell death, including apoptosis and autophagy 
(Malhi & Gores, 2008). Restricted hepatocyte proliferation may 

result in liver cirrhosis and an elevated risk of hepatocellular carci-
noma (Elkhamesy et al., 2022). Given that CCl4 upregulated the pro- 
apoptotic factor Bax and decreased the levels of the anti- apoptotic 
protein Bcl- 2, which was counteracted by the treatment with NWE, 
NPE, and hypaphorine, it is possible that C. speciosa root extracts 
may alleviate liver injury via the mediation of apoptosis.

It was noted that hypaphorine was not active in the antioxi-
dant assays measuring the levels of CAT and SOD (Table 4), which 
suggests that hypaphorine may have distinct mechanisms of ac-
tion. This was supported by the observation that hypaphorine also 
showed anti- inflammatory effects in reducing pro- inflammatory 
biomarkers, including IL- 6 (Figures 3b and 5b) and p- NF- κB and 
IκBα (Figures 4 and 5). This was in agreement with reported stud-
ies showing that hypaphorine is an anti- inflammatory compound 
against lipopolysaccharide- induced inflammation in the mouse 
macrophage (RAW 264.7 cells) (Sun, Cai, et al., 2017) and human 
microvascular endothelia (HMEC- 1 cells) (Sun, Zhu, et al., 2017). 
Although hypaphorine was not as active as NPE and NWE in sev-
eral anti- inflammatory assays (e.g., COX- 2 and TNFα), to date, this 
is the first in vivo study showing that hypaphorine can alleviate 
CCl4- induced liver damage. This expands our understanding of 
the chemotypes of bioactive compounds in Niudali extracts for 
their hepatoprotective effects. It is noted that, apart from hypa-
phorine, NPE and NWE both showed promising antioxidant and 
anti- inflammatory effects. In particular, the Masson trichrome 
staining assay showed that CCl4- induced liver fibrosis was ame-
liorated by the treatment of NPE (Figure S2). This is critical as se-
vere liver fibrosis can lead to cirrhosis, which is irreversible liver 
damage and a major cause of liver failure and hepatocellular car-
cinoma (Albanis & Friedman, 2001). Thus, NPE could be a prom-
ising dietary intervention for the management of liver diseases, 
including hepatic fibrosis (Carloni et al., 2014; Cheng et al., 2019; 
David & Friedman, 2012). This is supported by its effects on the 
regulation of MAPKs, including ERK1/2, p38, and JNK. These 
biomarkers are critical for regulating various cellular functions 
such as cell death, apoptosis, proliferation, and inflammation 
(Nakagawa & Maeda, 2012). The MAPK signaling pathway also 
mediates the expression of a series of pro- inflammatory media-
tors (Liu et al., 2012). Therefore, inhibition of MAPK activation is 

F I G U R E  8  Diagram of proposed 
hepatoprotective effects of C. speciosa 
roots on CCl4- induced liver injury in mice.
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a plausible approach to the prevention and treatment of liver in-
jury. Thus, it is possible that Niudali extracts, including NPE and 
NWE, alleviate liver injury by regulating the MAPK/NF- κB path-
way (Figure 8). However, other mechanisms may also contribute to 
the overall hepatoprotective effects of polysaccharide- enriched 
Niudali extracts. For instance, the gut microbiota- liver axis may 
play a pivotal role in Niudali's intervention in liver damage, given 
that those polysaccharides from Niudali are reported to modu-
late the gut microbiota and alleviate metabolic disorders in diet- 
induced obese C57BL/6 mice (Li et al., 2022). Thus, further studies 
are warranted to evaluate whether Niudali extracts can alleviate 
liver injury via the modulation of the gut microbiota.

5  |  CONCLUSION

In summary, we prepared two aqueous Niudali root extracts (i.e., 
NWE and NPE) and identified an alkaloid (i.e., hypaphorine), as well 
as evaluated their hepatoprotective effects in a mouse model. We 
showed that NWE, NPE, and hypaphorine mitigated CCl4- induced 
liver damage, as evidenced by data from the histopathological and 
blood chemical assays. Additionally, mechanistic studies on the in-
flammatory biomarkers suggested that Niudali extracts' liver protec-
tive effects were, at least partially, attributed to their modulations 
of inflammation and apoptosis- related signaling pathways, including 
the MAPK/NF- κB pathway. Notably, both polysaccharides and hy-
paphorine are active phytochemical constituents contributing to the 
overall hepatoprotective effects of Niudali extracts. Findings from 
the study provide useful insights into the bioactive constituents of 
Niudali extracts and their possible mechanisms of action, which are 
critical for the further development of Niudali extracts as a dietary 
intervention for managing liver diseases.
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