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ABSTRACT Root-associated microorganisms, particularly plant growth-promoting 
rhizobacteria (PGPR) from the Bacillus genus, play a crucial role in enhancing crop 
yield and health. In this study, a Bacillus strain was isolated from the rhizosphere 
soil of maize and identified as Bacillus velezensis D103. The primary objective of this 
research was to evaluate the potential of D103 as a PGPR. Laboratory tests demon­
strated that D103 is capable of nitrogen fixation, inorganic phosphorus solubilization, 
potassium solubilization, and the synthesis of indole-3-acetic acid, ammonia, sidero­
phores, amylase, protease, cellulase, β-1,3-glucanase, and 1-aminocyclopropane-1-car­
boxylate deaminase. Additionally, D103 exhibited swimming and swarming motility, 
biofilm formation, and an antagonistic activity against pathogenic fungi. Genome 
mining identified genes associated with growth promotion and biocontrol activities. In a 
hydroponics experiment, maize plants treated with a D103 suspension at a cell density 
of 103 CFU·mL−1 resulted in the most pronounced showed significant growth stimulation, 
with shoot length and total root length increasing by 43% and 148%, respectively. These 
results support the potential of D103 as an effective PGPR for promoting maize crop 
growth.

IMPORTANCE In this study, we assessed the capacity of D103 to promote plant growth 
and examined the effects of hydroponic experiments inoculated with this strain on the 
growth of maize seedlings. We sequenced and analyzed the complete genome of D103, 
identifying several genes and gene clusters associated with plant growth promotion and 
resistance to pathogenic fungi, thus revealing the plant growth-promoting mechanisms 
of this strain. The isolation and characterization of new strains with beneficial traits 
are essential for expanding microbial resources available for biofertilizer production. 
Collectively, these findings highlight the promising potential of Bacillus velezensis D103 
as a biofertilizer for agricultural applications.

KEYWORDS Bacillus velezensis, PGPR, genome sequencing, maize, rhizosphere

M odern agricultural practices have significantly enhanced crop yields over the 
past few decades, primarily through the extensive application of fertilizers and 

chemical pest control methods (1). However, the reliance on chemical fertilizers and 
manure to enhance soil fertility and crop productivity has adversely effected complex 
biogeochemical cycling processes (2). In response to these concerns, scientists and 
farmers worldwide are adopting organic farming practices, which incorporate traditional 
agricultural techniques and innovative technologies to replace chemical fertilizers and 
hazardous pesticides with organic fertilizers and biological control agents (3). Conse­
quently, there is a growing focus on developing novel strategies for organic technologies 
and exploring their integration with conventional agrochemicals to promote a more 
sustainable and environmentally friendly agricultural system.
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Rhizosphere bacteria that facilitate plant growth by providing essential nutrients 
and regulating plant processes are recognized as plant growth-promoting rhizobacteria 
(PGPR) (4). PGPR are considered a promising alternative to conventional fertilizer due 
to their environmentally friendly nature. These beneficial bacteria colonize the root 
surface or the rhizosphere and enhance plant growth through direct mechanisms such 
as biological nitrogen fixation (5), mineral solubilization, and production of various 
phytohormones (6). In addition, PGPR influence plant health through indirect mecha­
nisms, including the production of siderophores (7), 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase activity (8), volatile organic compound (VOCs) (9), antifungal activ­
ity, and induced systemic resistance (ISR) (10). Numerous genera of PGPR have been 
extensively studied and applied globally to evaluate their plant growth-promoting (PGP) 
potential, including Agrobacterium (8), Bacillus (11), Burkholderia (12), and Pseudomonas 
(11). These PGPR have demonstrated significant value in sustainable crop production.

Numerous Bacillus spp. have been recognized as PGPR and are commercially 
employed as biofertilizers due to their ability to produce resistant endospores, suppress 
pathogens, and promote plant growth (13). Among these, Bacillus amyloliquefaciens, 
Bacillus licheniformis, and Bacillus subtilis are the most extensively utilized species (14). 
In 1999, Bacillus velezensis (CR-502T) was originally isolated from environmental samples 
collected from the estuary of the Vélez River, Spain (15). Recently, several strains of 
B. velezensis have gained significant interest for their PGP capabilities, enhancing yield 
and improving product quality in both greenhouse experiments and field trials (16, 
17). B. velezensis FZB42 has been formulated into a commercially available inoculant, 
RhizoVital, to control various soilborne diseases and promote plant growth (18). Genome 
sequencing strategies have facilitated the investigation of plant growth-promoting 
genes and secondary metabolite gene clusters in Bacillus strains, aiding in the identifi­
cation of potential PGPR or biocontrol agents (19). Consequently, genetic studies and 
whole-genome comparisons are highly effective tools for understanding the biological 
characteristics of PGPR strains.

This study aimed to investigate the PGP properties of B. velezensis D103, isola­
ted from the maize rhizosphere. Specifically, the study evaluated (i) potential nutri­
tional contributions, including mineral solubilization and siderophore production; (ii) 
biochemical and enzymatic functions; (iii) antagonistic effects against fungal pathogens; 
(iv) genomic analysis and comparative genomics to elucidate the genetic basis of PGP 
activities and phytopathogen antagonism; and (v) the impact on maize growth.

RESULTS

Identification of strain D103

The morphological examination identified that D103 is a Gram-positive strain capable 
of spore production. Molecular identification was performed through sequencing of 
the 16S ribosomal RNA (rRNA) gene (1,547 bp). Basic Local Alignment Search Tool 
analysis and phylogenetic tree results confirmed that D103 was Bacillus velezensis (Fig. 
1a). Average nucleotide identity (ANI) results showed that D103 shared more than 
98.5% homology with Bacillus velezensis GH1-13, Bacillus amyloliquefaciens WF02, Bacillus 
amyloliquefaciens MBE1283, Bacillus velezensis B1, and Bacillus amyloliquefaciens T-5, with 
Bacillus velezensis GH1-13 showing the highest level of similarity (Fig. 1b; Fig. S1).

Characterization with beneficial traits of strain D103

To understand the mechanisms behind the plant growth-promoting effects of strain 
D103, we evaluated its capacity for nitrogen fixation, inorganic phosphate solubilization, 
potassium solubilization, and indole-3-acetic acid (IAA) production. Strain D103 demon­
strated nitrogen­fixing ability through its growth on nitrogen-free media (Fig. 2a). 
Nitrogenase activity, measured using the acetylene reduction assay, was 102.49 nmol 
ethylene·ml−1·h−1 (Table 1). Additionally, incubation with Pikovaskaia inorganic phos­
phate medium and Aleksandrov potassium-solubilizing medium resulted in clear zones 
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around D103 colonies, indicating its proficiency in solubilizing inorganic phosphorus and 
potassium (Fig. 2b and c). Quantitative assessments revealed that D103 solubilized 
inorganic phosphate at a concentration of 68.67 mg·L−1 (Table 1). Furthermore, strain 
D103 produced IAA, as demonstrated by the Salkowski test (Fig. 2e), with ultra-perform­
ance liquid chromatography (UPLC) analysis showing a production level of 31.60 mg·L−1 

(Fig. S2; Table 1).

Strain D103 produces ammonia and siderophores, possesses surface motility, 
and forms biofilms

Strain D103 produced ammonia, as indicated by the brown coloration of the culture 
liquid following the addition of Nessler’s reagent, confirming a positive result (Fig. 2j). 
The appearance of a yellow color around D103 colonies on Chrome Azurol S (CAS) 
agar medium further demonstrated the strain’s ability to produce siderophores (Fig. 2d). 
Motility assessments were conducted on media with varying agar concentrations (0.3% 
for swimming and 0.7% for swarming). The maximum colony diameter of D103 was 
observed after 12 h on swimming media and after 18 h on swarming media (Fig. S3). 
Additionally, strain D103 formed biofilm, as determined by the crystal violet staining 
method (Table 1). Quantitative analysis of the extracellular polymeric substance (EPS) 
extracts revealed that the EPS of D103 comprised 58.73 mg·L−1 of polysaccharides, 
32.05 mg·L−1 of proteins, and 8.07 mg·L−1 of nucleic acids (Table 1).

In vitro hydrolytic activity of strain D103

In the in vitro analysis (Fig. 2f through i; Table 1), strain D103 demonstrated hydrolytic 
activity, producing cellulase, protease, amylase, β-1,3-glucanase, and ACC deaminase. 
The enzyme activities measured for D103 were 254.89 U·mL−1, 545.52 U·L−1, 6304.55 U·L−1, 
150.83 U·L−1 and 32.55 IU·mL−1, respectively.

FIG 1 Taxonomic classification of Bacillus sp. downloaded from the National Center for Biotechnology Information Reference Sequence Database. (a)Phyloge­

netic tree depicting the relationships among Bacillus velezensis D103 and various other Bacillus strains based on 16S rRNA gene sequences. Phylogenetic 

relationships were determined using a maximum parsimony method, with support values derived from 1,000 replicates. (b)Pairwise average nucleotide identity 

(ANI) results between 42 Bacillus genomes. The similarity among all genomes is represented by a dendrogram using average linkage hierarchical clustering with 

tree heights corresponding to ANI similarity. Blue branches indicate most of the Bacillus genomes, while red branches represent different genomes of Bacillus 

licheniformis sp.
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Antagonistic activity against fungal pathogens

In vitro analyses involving five plant pathogenic fungi, demonstrated that strain D103 
effectively inhibited the growth of Fusarium graminearum, Athelia rolfsii, Fusarium 
thapsinum, Gibberella fujikuroi, and Gibberella moniliformis (Fig. 3).

Genomic characterization of strain D103

The genomic characterization of strain D103 is shown in Fig. 4a, highlighting key 
features. The genome consists of a circular chromosome measuring 3,857,531 bp, with 
an average guanine-cytosine (GC) percentage in DNA (GC content) of 46.7%. It contains 
3,884 protein-coding genes, 27 rRNA genes, and 86 transfer RNA (tRNA) genes. Func­
tional analysis of the genome sequences was performed using the Cluster of Ortholo­
gous Groups of Proteins (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Gene 
and Genomes (KEGG) databases. The assignments of the genes in these databases are 
presented in Table 2; Fig. 4.

Among the 3,884 genes present in the D103 genome, 3,239 genes were categorized 
into 19 categories of the COG database, while 645 genes remained uncategorized (Fig. 
4b; Table 2). The largest number of genes was classified into the category of functionally 

TABLE 1 Plant growth-promoting factors and hydrolytic enzymes produced by Bacillus velezensis D103 at 
different concentrations

Characteristics Activity rate

Nitrogenase activity 102.49 ± 3.40 nmol ethylene·ml−1·h−1

Inorganic phosphate solubilization 68.67 ± 4.19 mg·L−1

IAA production 31.60 ± 2.15 mg·L−1

Biofilm production 1.121 ± 0.094
Polysaccharides of EPSa 58.73 ± 3.25 mg·L−1

Proteins of EPS 32.05 ± 0.66 mg·L−1

Nucleic acids of EPS 8.07 ± 0.87 mg·L−1

Amylase activity 6304.55 ± 354.78 U·L−1

Cellulase activity 254.89 ± 21.84 U·mL−1

Protease activity 545.52 ± 55.63 U·L−1

ACC deaminase activity 32.55 ± 0.92 IU·mL−1

β−1,3-Glucanase activity 150.83 ± 4.22 U·L−1

aEPS, extracellular polymeric substance.

FIG 2 Experimental assessments of plant growth-promoting and hydrolytic enzyme production properties in strain D103. (a) Nitrogen fixation, (b) inorganic 

phosphorus solubilization, (c) potassium solubilization, (d) siderophore production, (e) IAA production, (f ) cellulase production, (g) protease production, 

(h) amylase production, (i) β-1,3-glucanase production, and (j) ammonia production.
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unknown proteins (S), comprising 23.02% with 894 genes. This was followed by amino 
acid transport and metabolism (E) with 263 genes (6.78%), transcription (K) with 257 
genes (6.62%), carbohydrate transport and metabolism (G) with 225 genes (5.79%), cell 
wall/membrane/envelope biogenesis (M) with 195 genes (5.02%), and energy produc­
tion and conversion (C) with 179 genes (4.61%).

FIG 3 Antifungal activity of strain D103 against various plant pathogenic fungi. (a1 through e1) Placement of a 1-cm agar plug in the center of each potato 

dextrose agar plate. (a2 through e2) Incubation of strain D103 3.5 cm away from the fungal plugs. Pathogenic fungi included (a) Fusarium graminearum, 

(b) Athelia rolfsii, (c) Fusarium thapsinum, (d) Gibberella fujikuroi, and (e) Gibberella moniliformis.

TABLE 2 Functional categorization of the genome of strain D103 in the COG database

COG categories Category function ORFa number

A RNA processing and modification 0
B Chromatin structure and dynamics 0
C Energy production and conversion 179
D Cell cycle control, cell division, and chromosome partitioning 30
E Amino acid transport and metabolism 263
F Nucleotide transport and metabolism 79
G Carbohydrate transport and metabolism 225
H Coenzyme transport and metabolism 116
I Lipid transport and metabolism 90
J Translation, ribosomal structure, and biogenesis 161
K Transcription 257
L Replication, recombination, and repair 129
M Cell wall/membrane/envelope biogenesis 195
N Cell motility 34
O Posttranslational modification, protein turnover, and chaperones 94
P Inorganic ion transport and metabolism 182
Q Secondary metabolites biosynthesis, transport, and catabolism 86
R General function prediction only 0
S Function unknown 894
T Signal transduction mechanisms 138
U Intracellular trafficking, secretion, and vesicular transport 31
V Defense mechanisms 56
W Extracellular structures 0
Y Nuclear structure 0
Z Cytoskeleton 0
aORF, open reading frame.
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The GO database identified 2,678 genes in D103. Among these, 1,364 genes were 
associated with molecular functions related to binding; 19 genes were associated 
with cell motility; and 5 genes were associated with locomotion. These functions are 
associated with the strain’s ability to form biofilms and colonize plant tissues (20) (Fig. 
4c). Using the KEGG database, we assessed the potential involvement of D103 genes in 
biological pathways, resulting in the classification of 2,152 genes. The KEGG pathway 
analysis categorized these genes into 40 functional pathways. The most represented 
pathways included carbohydrate metabolism (256 genes), amino acid metabolism (371 
genes), amino acid metabolism (285 genes), metabolism of cofactors and vitamins (155 
genes), membrane transport (140), and signal transduction (139 genes) (Fig. 4d).

Comparative genetic characterization among Bacillus spp.

Comparative genomic characterization was conducted among Bacillus spp., including 
reference strains Bacillus velezensis FZB42, Bacillus velezensis EN01, Bacillus subtilis 
168, and Bacillus amyloliquefaciens X030. Genome sequences were obtained from the 
National Center for Biotechnology Information (NCBI) database and compared with 
strain D103, as presented in Table 3. These five strains demonstrated overall similarity 
in genome size and the number of coding genes. However, differences in the number of 
genomic islands and prophages were observed, potentially contributing to variations in 
their genetic profiles. Genomic islands and prophages serve as mobile genetic elements 
facilitating horizontal gene transfer and play a role in bacterial adaptation and evolution 
(21).

Core-genome plot analyses of the five Bacillus genomes revealed a total of 1,744 
genes across these species (Fig. 5a). The distribution showed that 3,135 genes were 
shared between D103 and Bacillus subtilis 168; 2,181 genes were shared between D103 
and Bacillus amyloliquefaciens X030; and 2,655 genes were shared between D103 and 
Bacillus velezensis EN01. Additionally, 3,353 genes were common between D103 and 
Bacillus velezensis FZB42. D103 shared a considerable number of genes with B. velezen­
sis FZB42 and B. subtilis 168, suggesting potential similarities with these strains as 
PGPR. Compared to the other four Bacillus strains, D103 contained 358 distinct genes. 
Among these, 335 genes were associated with assumed proteins and proteins with 
unknown function, while 21 genes were linked to proteins of known function, including 
terpene synthase (WP_077722691.1), damage-inducible protein DinB (WP_082998055.1), 
SAM-dependent methyltransferase (EYB36085.1), NUDIX hydrolase domain-containing 
protein (AJK64336.1), protein kinase, sporulation protein, and transcriptional regulator, 
as listed in Table S1.

To assess genetic relationships, whole-genome sequences of the five strains were 
analyzed using the Mauve program (Fig. 5b). The analysis revealed significant local 
collinear block (LCB) inversions and gene insertions or deletions in strain D103 rela­
tive to Bacillus amyloliquefaciens compared to X030 and Bacillus subtilis 168. However, 
D103 showed greater genetic similarity to Bacillus velezensis FZB42, with no significant 
insertions or deletions or LCB inversions observed compared to FZB42 and Bacillus 
velezensis EN01.

TABLE 3 Comparative genomic analysis of B. velezensis D103, B. velezensis FZB42, B. velezensis EN01, B. subtilis 168, and B. amyloliquefaciens X030

General genomic characterization B. velezensis D103 B. velezensis FZB42 B. velezensis EN01 B. subtilis 168 B. amyloliquefaciens X030

NCBI accession CP095093 NC_009725.2 NZ_CP053377.1 NZ_CP010052.1 NZ_CP040672.1
Size (bp) 3,857,531 3,918,596 4,029,600 4,215,619 3,952,640
G + C content (mol%) 46.7 46 46.5 43.5 46.5
Total genes 3,884 3,877 4,002 4,426 3,907
rRNA 27 29 27 30 27
tRNA 86 88 86 86 84
Genomic Island 5 3 17 24 7
Prophage 2 2 6 4 5
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The annotation analysis of predicted amino acid sequences from strain D103 and 
four other Bacillus strains (FZB42, EN01, 168, and X030) using the dbCAN carbohy­
drate-active enzyme (CAZyme) database revealed that the D103 genome contains 193 
CAZymes. These include 40 glycoside hydrolase (GH) enzymes, 34 glycosyltransferase 
(GT) enzymes, 17 carbohydrate esterases (CEs), three polysaccharide lyase (PL) enzymes, 
six auxiliary activities (AAs), and six carbohydrate-binding module (CBM) proteins (Table 
4). Enzymes identified in D103, FZB42, EN01, and X030 involve acetylxylan esterase (CE 
family 6) (EC 3.1.1.72) and monooxygenases (AA family 10), such as lytic xylan mono­
oxygenase/xylan oxidase (glycosidic bond-cleaving) (EC 1.14.99.-), lytic chitin monooxy­
genase (EC 1.14.99.53), lytic cellulose monooxygenase, lytic cellulose monooxygenase 
(C1-hydroxylating) (EC 1.14.99.54), and lytic cellulose monooxygenase (C4-dehydrogen­
ating) (EC 1.14.99.56). These enzymes were found in D103, FZB42, EN01, and X030 

FIG 4 Database annotation for B. velezensis D103. (a) A circular genome map is presented, showing the scale; GC skew; GC content; COG classifications for 

coding DNA sequences (CDS); and the specific positions of CDS, transfer RNA (tRNA), and ribosomal RNA (rRNA) on the genome. This map offers a comprehensive 

overview of the genomic structure. (b) COG database annotation, (c) GO database annotation, (d) KEGG database annotation.
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but were absent in 168.While the numbers of CAZymes varied among strains, no 
CAZymes were discovered in D103, indicating similarities in their environmental habitat 
and nutritional sources. Differences in microbial ability to depolymerize and metabolize 
sugars may suggest ecological role differentiation to mitigate competition for resources 
(22).

Genomic analysis of D103 using antiSMASH identified 13 secondary metabolite gene 
clusters: four NRPS, three TransAT-PKS, two terpenes, one lanthipeptide, and one other 
KS. These clusters are involved in the biosynthesis of various compounds, including 
andalusicin A/andalusicin B, surfactin, butirosin A/butirosin B, macrolactin H, bacillaene, 
fengycin, difficidin, bacillothiazol A-N, bacillibactin, and bacilysin (Table 5). Comparison 
of the secondary metabolite gene clusters in D103 with those in FZB42, X030, EN01, 
and 168 (Fig. 6) revealed that five clusters (2, 4–7) were present in each of the Bacillus 
strains. Additionally, four clusters (3, 5, 9, and 10) were shared by D103, FZB42, EN01, and 
X030; two clusters (12 and 13) were common to D103, FZB42, EN01, and 168; and one 
cluster (11) was found in both D103 and FZB42. Furthermore, three clusters (4, 8, and 9) 
were associated with unknown compounds. A distinctive cluster (1) responsible for the 
production of andalusicin A/andalusicin B was present only in D103.

Plant growth-promoting genes in D103 strain

The D103 genome contains numerous genes predicted to be involved in plant growth-
promoting activities (Table S2). Among these, moa clusters (moaA-E), responsible for 
encoding molybdenum cofactors, were identified, suggesting a possible role in nitrogen­
fixing gene clusters or cofactors, essential for nitrogen assimilation (23). Additionally, 
D103 encodes critical elements such as sensor histidine kinase (glnK), a gene cluster for 
nitrate transport and reduction (nasD-F), HTH-type transcriptional regulators (tnrA and 
glnR), glutamine synthetase (nifS), ammonium transporter (nrgA), nitrogen regulatory 
PII-like protein (nrgB), a gene cluster for urease subunit (ureA-C), a gene cluster for 
nitrate reductase (narG-J), a probable transcription regulator (arfM), and nitrite extrusion 
protein (narK). These components contribute to facilitating nitrogen assimilation (24). 
The genome of D103 revealed the presence of 19 phosphatase genes involved in 
phosphorus solubilization. Additionally, D103 contained potassium transporter genes, 
including K+/H+ antiporter subunits (khtS-U), ktr system potassium uptake proteins (ktrA, 
ktrC, and ktrD), and putative potassium channel protein (yugO) (25). Furthermore, the 
D103 genome included magnesium transporter genes (mgtE, corA) (26), manganese 
assimilation-related genes (mntH, mntR, and mntP) (27), iron assimilation-related genes 
(yclQ, yusV, and yvrA-C) (28), and a cluster of bivalent cation assimilation-related genes 
(tuaA-H). These genes were hypothesized to play crucial roles in mineral element uptake 
and the detoxification of heavy metal ions in both bacteria and plants.

PGPR produce VOCs that have the potential to serve as environmentally friendly 
alternatives to chemical fertilizers. These compounds, including 2,3-butanediol, enhance 
plant growth by improving nutrient availability, inducing metabolic activities, and 
stimulating defense responses (29). Analysis of the D103 genome revealed the als gene 
cluster (alsD, alsS, and alsR) and (R,R)-butanediol dehydrogenase (bdhA), key components 
of the biosynthetic pathway for 2,3-butanediol from pyruvate (30). Additionally, we 

TABLE 4 Comparative analysis of predicted carbohydrate-active enzyme families in B. velezensis D103, B. 
velezensis FZB42, B. velezensis EN01, B. subtilis 168, and B. amyloliquefaciens X030

CAZymes B. velezensis 
D103

B. velezensis 
FZB42

B. velezensis 
EN01

B. subtilis 
168

B. amyloliquefaciens 
X030

GH 40 41 42 58 42
GT 34 34 35 39 34
CE 17 17 17 18 17
PL 3 3 3 7 3
AA 6 6 6 5 6
CBM 6 6 6 14 6
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identified the acu gene cluster (acuA-C) responsible for encoding acetoin, a compound 
known to promote the development of ISR in plants (31).

The genome of D103 contains genes involved in trehalose biosynthesis (treP, treA, 
and treR), spermidine and polyamine biosynthesis (speA, speH, speB, speE, and msmX), 
and siderophore biosynthesis (dbhA, dbhB, dbhC, dbhE, and dbhF). These gene clusters 
contribute to promoting plant growth and inhibiting the growth of plant pathogens 
(32–34). Additionally, D103 contains 12 genes involved in IAA biosynthesis, utilizing 
pathways such as indole-3-acetonitrile (yhcX, trpA-F, trpP, and trpS) and indole-3-pyru­
vate (dhaS) for IAA synthesis (35). Furthermore, the genome includes genes related 

FIG 5 Genomic comparison of B. velezensis D103 with B. velezensis FZB42, B. velezensis EN01, B. subtilis 168, and B. amyloliquefaciens X030. (a) The Venn diagram 

illustrates the number of shared and unique clusters of orthologous genes among the strains. (b) Whole-genome comparison using Mauve progressive analysis, 

highlighting homologous regions, represented by color-coded boxes connected by lines. Forward and reverse regions are differentiated above and below the 

central axis.
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to auxin excretion (ywkB) and IAA acetylation (ysnE), indicating involvement in the 
tryptophan-independent IAA biosynthetic pathway (19). The presence of phytase genes 
(phy) suggests the potential to degrade phytate, thereby promoting plant growth under 
phosphate-limited conditions (31).

Effective biofilm production by PGPR enhances their adherence to plant roots and 
augments plant growth-promoting activities (36). Flagella, motility, and chemotaxis play 
important roles in all stages of biofilm formation (37). D103 possesses genes associated 
with bacterial chemotaxis (che gene cluster and mcpA-C), flagellar assembly (fli cluster, 
flg cluster, flh cluster, motAB), and swarming motility (swrB-D and swrAA, efp). Genes 
involved in the initial stages of biofilm formation, including histidine kinases (kinA-D), 
master regulators (spo0A, spo0B, spo0E, spo0F, and spo0J), and transcriptional regula­
tors (17 genes), were identified in the genome of D103. Components of the biofilm 
matrix, including secreted proteins (TasA, TapA, and BslA), mineral scaffolds, extracellular 
DNA, and extracellular polysaccharides (eps gene cluster: epsC-O), were also present. 
Additionally, genes related to biofilm surface formation (yuaB), colony biofilm strength 
(pgsA), and the development of multicellular communities (ecsB, ylbF, ymcA, and yqeK) 
were identified in the D103 genome (38).

Based on comparative genomic analyses (Table S3), 199 PGP genes were identified 
in the D103 genome. Bacillus velezensis FZB42 and Bacillus subtilis 168 shared the 
most PGP genes with D103, 198 and 195, respectively. Notably, FZB42 was devoid of 
sigW, a gene involved in the transcriptional regulation of biofilm formation, while 168 
was devoid of ybjI, a gene associated with phosphorus assimilation; tuaA, a gene for 
divalent cation assimilation; trpC, a gene for IAA biosynthesis; and swarming motility 
gene swrAA. Bacillus velezensis EN01 contains 153 PGP genes shared with D103, whereas 
Bacillus amyloliquefaciens X030 exhibits the lowest number of PGP genes with D103, 
with only 126 shared genes. Compared to other strains, fewer genes associated with 
swarming motility, flagellar assembly, and biofilm formation were identified in the 
genomic comparisons between D103 and both EN01 and X030.

Plant growth-promoting capacity of strain D103

In a hydroponic cultivation system, maize plants were exposed to a range of D103 
cell suspension concentration from 10 to 106 CFU·mL−1. Growth parameters assessed 

TABLE 5 Comparative analysis of secondary metabolite gene clusters in Bacillus velezensis D103 and four other Bacillus strains (FZB42, X030, EN01, and 168)

D103 Gene cluster location Presence (+) or absence (−)

Cluster 
number

Type From To Compound Size (kb) FZB42 EN01 168 X030

1 Lanthipeptide 193,743 216,358 Andalusicin A/
andalusicin B

22,615 − − − −

2 NRPS 311,522 376,328 Surfactin 64,806 + + + +
3 PKS-like 894,710 935,954 Butirosin A/

butirosin B
41,244 + + − +

4 Terpene 1,020,841 1,037,485 Unknown 16,644 + + + +
5 TransAT-PKS 1,337,888 1,425,686 Macrolactin H 87,798 + + − +
6 TransAT-PKS, T3PKS, 

NRPS
1,645,193 1,745,891 Bacillaene 100,698 + + + +

7 NRPS, TransAT-PKS, 
Betalactone

1,812,907 1,947,038 Fengycin 134,131 + + + +

8 Terpene 1,975,295 1,997,178 Unknown 21,883 + + + +
9 T3PKS 2,060,900 2,102,000 Unknown 41,100 + + − +
10 TransAT-PKS 2,229,868 2,323,605 Difficidin 93,737 + + − +
11 NRPS 2,815,113 2,864,622 Bacillothiazol A-N49,509 + − − −
12 NRPS, RiPP-like 2,965,190 3,016,986 Bacillibactin 51,796 + + + −
13 Other 3,535,967 3,577,385 Bacilysin 41,418 + + + −
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included shoot length (aerial parts), total leaf area, and both fresh and dry weights of 
the aerial parts. Root development was evaluated based on total root length, surface 
area, volume, and fresh and dry weight. The results demonstrated a significant impact of 
D103 cell suspension concentrations on maize plant growth (Fig. 7a; Fig. S4). Specifically, 
maize seedlings treated with a 103 CFU·mL−1 D103 cell suspension exhibited significant 
increases in shoot length and total leaf area, showing 43% and 60% enhancements 
(P < 0.001), respectively, compared to the control group. Additionally, these seedlings 
demonstrated superiority with total root length reaching 193.62 cm (148% higher than 
the control), a root surface area of 36.46 cm2 (114% higher than the control), and a root 
volume of 0.54 cm3 (86% higher than the control) (Fig. 7b through e). Moreover, the dry 
weights of both aerial parts and roots of maize treated with the 103 CFU·mL−1 D103 cell 
suspension were significantly increased compared to the control (P < 0.001) (Fig. S5). 
These findings indicate that a D103 cell suspension concentration of 103 CFU·mL−1 is 
optimal for enhancing maize plant growth and development.

DISCUSSION

The application of PGPR as biofertilizer represents a viable approach for advancing 
sustainable agriculture intensification (39). The isolation of Bacillus strain D103 from 
maize rhizosphere soil, combined with phenotypic and phylogenetic analyses, estab­
lished its classification as Bacillus velezensis. This specie is distinguished by its resilience 
to adverse environmental conditions, secretion of diverse hydrolytic enzymes, enhanced 
plant growth, exertion of antagonistic effects on phytopathogens, and maintenance 
of a favorable safety profile, highlighting its significant agricultural potential (40, 41). 

FIG 6 A comparative analysis of the locations of secondary metabolite gene clusters in B. velezensis D103, B. velezensis FZB42, B. amyloliquefaciens X030, B. 

velezensis EN01, and B. subtilis 168.
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Accordingly, Bacillus velezensis D103 demonstrates potential as a PGPR for agricultural 
applications. This investigation involved a comprehensive characterization of D103 to 
evaluate its efficacy in promoting plant growth.

Nitrogen is an essential element for plant growth, and nitrogen­fixing bacteria 
play a crucial role in fixing atmospheric nitrogen into a form that can be utilized by 
plants, thereby enhancing the soil nitrogen reservoir (5). In this study, Bacillus velezen­
sis D103 demonstrated nitrogen­fixing capabilities and thrived in nitrogen­deficient 
environments. Previous research has established that nitrite reductase, a crucial enzyme 
nitrogen fixation, is encoded by the nas operon. This operon activates transcription by 
binding to motifs within the TnrA promoter, thereby enhancing the conversion of nitrite, 
nitrate, and urea into ammonium (42). Twenty-four nitrogen assimilation genes including 
nasDEF and tnrA were identified in the D103 genome. Additionally, D103 demonstrated 
ammonia production, a primary nitrogen source for plants, consequently promoting 
plant growth. The nitrogen­fixing potential of D103 was demonstrated by acetylene 
reduction analysis assay.

Phosphorus is a crucial macronutrient for plant growth and development. Due 
to its rapid immobilization, rendering it inaccessible to plants, phosphate-solubilizing 
bacteria are essential for converting insoluble phosphorus into bioavailable forms 
(43). Strain D103 demonstrated the ability to solubilize inorganic phosphorus, thereby 
enhancing phosphorus availability for plants. Nineteen genes associated with phosphate 

FIG 7 Hydroponic cultivation was employed to assess the growth promotion of maize by applying varying concentrations of the B. velezensis D103 strain. 

(a) Maize growth responses were observed across a range of D103 strain concentrations, from 10 to 106 CFU·mL−1, with the control (CK) lacking the D103 strain 

culture. The agronomic characteristics of maize seedlings were quantified, including (b) aerial length, (c) total root length, (d) total leaf area, (e) root surface area, 

and (f ) root volume. Different letters indicate statistically significant differences between treatments (P < 0.05, n = 10).
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solubilization, including pstBS and phoADEPR, were identified in strain D103. The pst, 
a phosphate transport system permease, potentially increases phosphate uptake and 
bioavailability under phosphate-limited conditions (44). Similarly, Torres et al. (45) 
reported the presence of the organic phosphorus mineralization gene (phoACDX) and 
the P-starvation response regulatory gene (phoBPR) in the Bacillus sensu lato genome. 
The phosphorus assimilation gene in D103 increases phosphate utilization in the host 
plant.

Auxin, particularly IAA, is a critical regulator of plant growth and development, 
influencing numerous processes, including seedling growth and root formation (46). 
Previous research has shown that inoculation with IAA-producing Bacillus amyloliquefa­
ciens can promote lateral root growth, elongation, and root hair formation in plants such 
as Arabidopsis thaliana (47). This study demonstrated that D103 exhibited IAA produc­
tion, potentially stimulating root development in the host plant. Notably, plant roots 
release tryptophan in the rhizosphere, serving as a substrate for IAA biosynthesis by 
rhizobacteria (48). In this study, 12 genes identified in the D103 genome were putatively 

FIG 8 Bacillus velezensis D103 possesses beneficial metabolic pathways and genes associated with plant growth-promoting rhizobacteria.
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involved in IAA biosynthesis, including dhaS, encoding aldehyde dehydrogenase, an 
enzyme crucial for converting indole-3-acetaldehyde to IAA in the indole-3-pyruvic 
acid (IPyA) pathway. Studies on Bacillus amyloliquefaciens SQR9 have demonstrated 
that mutation of the dhaS gene reduces IAA production to only 23% of wild-type 
levels (49). These findings suggest that the IPyA pathway is a significant contributor 
to IAA biosynthesis in D103. Furthermore, D103 possessed genes for synthesizing other 
potentially beneficial hormones, including trehalose, and phytase. Similar to findings in 
other bacterial strains, these hormones are implicated in promoting plant growth and 
enhancing plant tolerance to diverse environmental stresses (50, 51).

Iron, which typically presents in soil as insoluble trivalent Fe3+ hydroxide, is not readily 
assimilated by plants. Siderophores, produced and secreted by bacteria, facilitate the 
uptake of iron into plant cells (52). The dhbA-F operon plays a crucial role in siderophore 
biosynthesis. Studies have shown that mutants lacking the ΔdhbA gene are unable 
to dehydrogenate (2S,3S)-2,3-dihydroxy-2,3-dihydrobenzoate to 2,3-dihydroxybenzoate 
(DHB) (53). This inability disrupts extracellular electron transport with ferric iron captured 
by DHB. This study revealed that D103 possesses the ability to produce siderophores 
and contains a dhb cluster in its genome. Notably, the siderophores produced by D103 
contributed to biocontrol by competing for iron, thereby reducing its availability to 
pathogens (53). The results demonstrated that D103 enhanced Fe3+ availability under 
iron­deficient conditions, which was a key factor promoting maize seedling growth.

Colonization of the plant rhizosphere by bacterial strains is the initial and most crucial 
step in promoting plant growth and health. Genes associated with motility, chemotaxis, 
adhesion, and biofilm formation are believed to contribute to colonization (54). While 
swimming has been identified as the primary mechanism for movement in liquid 
media, swarming is considered more significant in natural soil environments. In these 
conditions, dynamic multicellular rafts are formed as groups of cells that move rapidly 
across solid surfaces, potentially enhancing nutrient acquisition. This phenomenon 
has been observed in Bacillus amyloliquefaciens T-5 colonization nutrient-rich tomato 
roots (55, 56). The study highlighted the swimming, swarming, and biofilm formation 
abilities of strain D103, and identified a large number of genes in its genome associated 
with bacterial chemotaxis, flagellar assembly, swarming motility, and biofilm formation. 
Bacteria forming biofilms have been reported to exert more beneficial effects on plant 
growth compared to their planktonic cells counterparts. For instance, Pseudomonas 
azotoformans FAP5 contributes to root colonization and improves wheat performance 
under stressful conditions (57, 58). Therefore, these characteristics are essential for D103 
adaptation, persistence under varying environmental conditions, and the promotion of 
maize growth.

Biological control of rhizosphere microbes provides host plants natural protection 
against pathogens (59). The production of secondary metabolites by antagonistic 
bacteria is the primary mechanism of disease suppression (60). In this study, we 
identified 13 secondary metabolite gene clusters with antimicrobial activity in the 
genome of D103. Combined with observed antifungal results, these findings suggested 
the significant biocontrol potential of D103 as an inoculum. This outcome aligns with 
previous reports emphasizing the secondary metabolite potential of B. velezensis strain 
(61). Notably, D103 contained a unique cluster of genes responsible for synthesizing 
andalusicin A and andalusicin B, a novel family of class III lantibiotics derived from 
Bacillus thuringiensis subsp. andalousiensis NRRL B23139. This cluster demonstrated 
biological activity directed at Bacillus cereus and related species (62). These findings 
emphasize the promising potential of D103 for managing plant pathogens in agricultural 
applications.

Finally, the direct impact of D103 on plant growth was evaluated, revealing a 
significant enhancement in maize growth when applied at the appropriate concentra­
tion. Numerous studies have demonstrated that PGPR stimulate plant root growth and 
increase root fresh and dry weight, thereby enhancing nutrient uptake (63, 64). D103 
increased the length and surface area of corn root structures, offering benefits for 
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improved ion uptake and nutrient storage. Similarly, other strains of Bacillus velezensis, 
such as SQR9, have been shown to promote cucumber growth through various PGP 
mechanisms (65). Collectively, these results suggest that D103 has potential as both a 
maize plant growth promoter and a natural biocontrol agent against plant pathogens.

Conclusion

Bacillus velezensis D103 was evaluated for its plant growth-promoting properties, 
demonstrating its potential to increase maize plant height and enhance root develop­
ment. Genomic analyses further validated the findings from in vitro assays and hydro­
ponic plant experiments, confirming the efficacy of D103’s role as PGPR. The genomic 
analysis revealed the presence of a multitude of genes potentially involved in plant 
growth promotion. Collectively, these findings strongly suggest that D103 is a promising 
candidate for biofertilizer development, with potential application as a single inoculant 
or as part of a microbial consortium (Fig. 8)

MATERIALS AND METHODS

Isolation and culture conditions of bacteria

Soil samples were collected from the rhizosphere of maize in an experimental field at 
the Haicheng Branch Campus of Shenyang Agricultural University in Haicheng, China 
(latitude 40°98′08 N, longitude 122°72′64 E). The field was situated at an elevation of 
14.3 m above sea level and had been cultivated with maize crop for >5 years. The area 
experiences extreme annual temperature variations (−30°C to 34.4°C) and an average 
annual rainfall of 652 mm. Soil samples were collected in June 2020, and the maize 
rhizosphere bacterium D103 was isolated using the gradient dilution technique to assess 
its potential for promoting plant growth. The bacterial strain was cultured in Luria-Ber­
tani (LB) medium, composed of 0.5% yeast extract, 1% sodium chloride, and 1% peptone, 
with 1.5% agar added for solidification. For long-term preservation, pure cultures were 
stored at −80°C in an LB medium supplemented with 20% glycerol (vol/vol).

Identification of the strain

Gram staining and spore morphology of the bacterial strain were examined microscop­
ically. The 16S rRNA gene was subjected to colony polymerase chain reaction (PCR) 
using forward primer 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and reverse primer 1492R 
(5′-GGTTACCTTGTTACGACTT-3′) (66). The PCR cycling parameters were as follows: initial 
denaturation at 94°C for 3 min, followed by 30 cycles of denaturation at 95°C for 40 
seconds, annealing at 56°C for 40 seconds, and elongation at 72°C for 90 seconds, 
with a final extension step at 72°C for 10 min. Purified PCR products were sequenced 
using an ABI 3730 Genetic Analyzer (Applied Biosystems). The obtained sequences were 
compared with reference sequences from the NCBI database using Basic Local Alignment 
Search Tool for Nucleotides software. Reference 16S rRNA sequences were retrieved 
from GenBank. Sequence alignment was performed using MAFFT (https://mafft.cbrc.jp/
alignment/server/). A phylogenetic tree was generated using FastTree (v.2.1.7) (67) with 
1,000 bootstrap replicates, and the tree was visualized using ITOL online tool (https://
itol.embl.de).

Assessment of in vitro plant growth-promoting capacity

To evaluate the nitrogen­fixing capability of strain D103, Ashby’s nitrogen-free agar 
medium was utilized (68). The ability of D103 to grow on this medium indicated 
its nitrogen­fixing potential. Nitrogenase activity was quantified using the acetylene 
reduction assay and gas chromatography (GC) as described by Swamy et al. (69). Briefly, 
strain D103 was inoculated into nitrogen-free Ashby’s medium and incubated for 48 
h at 37°C with shaking at 180 rpm. Subsequently, 2 mL of the culture was transferred 
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to 45 mL of Ashby semisolid medium for further incubation. Afterwards, 25 mL of the 
enriched culture was transferred to 100-mL vials. A sterile syringe replaced 10 mL of 
air with equivalent acetylene gas and was incubated for 24 h. Nitrogen fixation was 
assessed by measuring ethylene production using the acetylene reduction assay. The 
ethylene produced was analyzed using gas chromatography (Shimadzu GC 2010PLUS, 
Japan) equipped with a flame ionization detector. The chromatographic column used 
was packed with alumina (3-m length, 0.53-mm diameter). The GC conditions were 
as follows: oven temperature was maintained at 80°C, while the injector and detector 
temperatures were set at 165°C. Nitrogen gas and hydrogen gas flow rates were each 40 
mL·min−1, and the air flow rate was 45 mL·min−1. A 1-mL gas sample was injected, and 
the peak area for ethylene was measured in relation to a standard ethylene. Ethylene 
production was expressed as nanoliters of ethylene formed per milliliter of medium per 
hour at 37°C.

To assess the phosphorus-solubilizing potential of strain D103, modified Pikovaskaia’s 
agar medium was utilized (70). The inoculated plates were incubated at 37°C for 7 
days. Phosphorus solubilization was assessed by observing the formation of clear zones 
around the colonies. The amount of solubilized phosphorus was quantified using the 
phosphomolybdate method (71).

To assess the potassium-solubilizing capability of strain D103, the Aleksandrov agar 
medium was used (72). The plates inoculated with the strain, were incubated at 37°C 
for 7 days. The potassium-solubilizing potential of D103 was determined by observing 
the formation of clear zones around the colonies, which indicated positive potassium 
solubilization.

IAA production was assessed using the method described by Mahdi et al. (73), 
involving the application of Salkowski’s reagent. A color change from yellow to pink 
indicated IAA production. Quantification of IAA was carried out by UPLC following the 
method described by Shah et al. (74). Briefly, D103 was inoculated into 500 mL of LB 
medium supplemented with 0.5% L-tryptophan and incubated at 37°C with shaking at 
180 rpm for 7 days. The culture liquid phase was centrifuged at 6,500 rpm for 10 min, 
acidified to pH 2.5–3.0 with 1-N HCl, and extracted with an equal volume of ethyl acetate. 
The ethyl acetate phase was evaporated under vacuum using a rotary evaporator at 40°C, 
and the residue was redissolved in 1 mL of methanol and stored at −20°C. UPLC analysis 
was performed using a Waters H-Class system (Milford, MA, USA) with a C18 column 
(5 µm, 4.6 × 250 mm). The mobile phase consisted of a water-methanol mixture (60:40) 
with 0.5% acetic acid, and elution was conducted at a flow rate of 1 mL·min−1. IAA was 
detected with a UV-visible detector at 280 nm. Retention times and peak areas were 
determined using standard IAA calibration curves.

Ammonia and siderophore production, surface motility, and biofilm forma­
tion

Bacterial cultures were assessed for ammonia production using Nessler’s reagent, as per 
outlined by Oliva et al. (75). A mixture of 5 mL of supernatant from centrifugation of 
overnight culture broth with 1 mL of Nessler’s reagent indicated NH3 production by a 
color change from yellow to brown. Siderophore production was determined using CAS 
medium (76). Inoculated plates were incubated at 37°C for 4 days, and the presence of an 
orange-yellow halo around colonies confirmed positive siderophore production.

To assess surface motility, 2.5 µL of each strain cultured overnight (1 × 108 cells) was 
spotted at the center of LB plates solidified with 0.3% and 0.7% agar. Swimming motility 
and swarming motility over the surface were analyzed on separate plates (90 mm) (77). 
Incubation occurred at 37°C for 24 h, with colony diameters measured at 6-h intervals.

Biofilm formation was evaluated in 96-well polystyrene microtiter plates using the 
crystal violet method (78). OD590 nm values served as an index of biofilm formation. EPS 
from strain D103 was extracted using the EDTA extraction method (79). Polysaccharides 
within the EPS extracts were quantified using a modified phenol-sulfuric acid colorimet­
ric method, employing glucose as the standard (80). Protein content in the EPS extract 
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was determined using the Coomassie brilliant blue staining method, with bovine serum 
albumin as the standard (81). Nucleic acids were quantified using the diphenylamine 
method (82).

Detection of in vitro hydrolytic activity

To assess in vitro hydrolytic activity, we investigated the production of cellulose (83), 
protease (84), amylase (85), and β-1,3-glucanase (86) by strain D103, as previously 
outlined. We quantified the activities of these four enzymes using the Microorganism 
Cellulase ELISA Kit, Microorganism Protease ELISA Kit, Microorganism Amylase ELISA Kit, 
and Microorganism β-1,3-glucanase ELISA Kit, all provided by Jiangsu Meimian Industrial 
Co., Ltd. Additionally, ACC deaminase production and enzyme activity were directly 
determined using the ACC deaminase ELISA Kit from Jiangsu Meimian Industrial Co., Ltd.

In vitro antagonism assay

To assess the antagonistic effectiveness of D103 against phytopathogens, we selec­
ted five fungal pathogens: Fusarium graminearum, Athelia rolfsii, Fusarium thapsinum, 
Gibberella fujikuroi, and Gibberella moniliformis. The antifungal resistance of D103 was 
determined through a triple-replicated dual culture experiment (23). In this experimental 
setup, strain D103 and each pathogen were simultaneously cultured on 9-cm potato 
dextrose agar plates, with 8-mm plugs of the pathogen positioned 3.5 cm apart. The 
plates were then incubated at 28°C for duration of 4 days.

DNA extraction

Genomic DNA extraction was performed using the cetyltrimethylammonium bromide 
method (87).The DNA was subsequently assessed for concentration, quality, and integrity 
using a Qubit Fluorometer (Invitrogen, USA) and a Nano Drop Spectrophotometer 
(Thermo Scientific, USA).

Genome sequencing and assembly

Qualified genomic DNA was fragmented with G-tubes (Covaris, Woburn, MA, USA) 
and subjected end repair to prepare SMRTbell DNA template libraries with fragment 
size of>10kb using the blue pippin system, following the manufacturer’s specification 
(PacBio, Menlo Park, CA, USA). The quality of the libraries was assessed using Qubit (v.2.0) 
Fluorometer (Life Technologies, CA, USA), and the average fragment size was determined 
with a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). SMRT sequencing was performed 
on the Pacific Biosciences Sequel (PacBio) according to standard protocols.

Qualified genomic DNA was first randomly sonicated, followed by end repair, 
A-tailing, and adaptor ligation using the NEBNext ΜLtra DNA Library Prep Kit for Illumina 
(NEB, USA) in accordance with the manufacturer’s protocol. DNA fragments ranging 
from 300 to 400 bp were selectively enriched by PCR. The PCR products were subse­
quently purified with the AMPure XP system (Beckman Coulter, Brea, CA, USA). Library 
size distribution was assessed using a 2100 Bioanalyzer (Agilent), and concentration 
was determined by real-time PCR. Genome sequencing was performed on the Illumina 
Novaseq 6000 sequencer utilizing paired-end technology (PE 150).

Continuous long reads obtained from SMRT sequencing were utilized for de novo 
assembly using Falcon (v.0.3.0) (88). Raw data from Illumina platform were processed 
with FASTP (v.0.20.0) (89) by applying the following standards: (i) reads containing ≥10% 
unidentified nucleotides (N) were discarded; (ii) reads with ≥50% bases having phred 
quality scores of ≤20 were excluded; and (iii) reads aligned to the barcode adapter were 
removed. Following filtration, the resulting clean reads were employed to refine the 
genome assembly and enhance accuracy. The final genome sequences were determined 
using Pilon (v.1.23) (90) to correct errors and ensure high-quality assembly.
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Genome component prediction

Open reading frames were predicted using the NCBI prokaryotic genome annotation 
pipeline (91). rRNAs were identified using rRNAmmer (v.1.2) (92), while tRNAs were 
detected with tRNAscan (v.1.3.1) (93). Small RNAs (sRNAs) were identified with cmscan 
(v.1.1.2) (94).

Genome composition prediction and annotation

The genome was functionally annotated using several databases, including the Non-
redundant Protein Database, GO, KEGG, COG, and Swissprot. To provide a comprehensive 
overview of the genomic data, CGview (version 2.0.2) (95) was utilized.

Analysis of average nucleotide identity

The ANI of the D103 genome was compared with 41 sequenced Bacillus strain genomes 
FastANI tool (v.1.1) (96). Clustering was performed using bactaxR (v.3.6.1) package in R 
(97). The phylogenetic tree was generated with ggtree (v.1.16.6) (98), and a heat map was 
produced using TBtools-II (v.21.0.3) (99). A total of 41 Bacillus reference whole-genome 
sequences were obtained from GenBank for this analysis.

Comparative genomics

In the comparative genomics analysis, four Bacillus strains (Bacillus velezensis FZB42, 
Bacillus velezensis EN01, Bacillus subtilis 168, and Bacillus amyloliquefaciens X030) served 
as reference strains. Genomic characterization utilized NCBI annotated data. Gene 
families derived from protein sequences of both reference and target bacteria were 
analyzed using orthoMCL software (v.2.0.8) , resulting in Venn diagrams (100). Genomic 
comparisons of the five Bacillus strains employed Mauve software (v.2.3.1) (101). 
Genomic islands were identified using the Island Viewer four online platform, while 
prophages were predicted with the PHASTER online tool (http://phaster.ca/).

Carbohydrate-active enzyme identification

To identify genes encoding CAZymes in the D103 genome, the dbCAN3 database (http://
bcb.unl.edu/dbCAN2/) was utilized. This analysis detected various CAZyme categories, 
including GH, PL, CE, GT, AA, and CBM (102).

Secondary metabolite analysis

To analyze secondary metabolites and identify biosynthetic gene clusters associated 
with the production of antimicrobial compounds from various chemical classes, the 
antiSMASH online tool (https://antismash.secondarymetabolites.org) was employed.

Functional gene analysis related to plant growth promotion

The D103 genome was investigated for genes associated with PGP, including those 
involved in mineral assimilation, IAA synthesis, bacterial chemotaxis, flagellar assembly, 
and biofilm formation. The sequences identified were compared with the reference 
sequences in GenBank to validate their accuracy. The PGP-related genes from the D103 
genome were compared at the amino acid level with those in the genomes of Bacillus 
strains: FZB42, EN01, 168, and X030 using the NCBI database.

Growth-promoting capacity of D103 on maize

To assess the growth-promoting capabilities of D103 on maize, a bacterial suspension 
was prepared by incubating D103 for 12 h, resulting in an optical density of OD590 nm = 1 
(1 × 108 CFU·mL−1). The suspension was serially diluted with sterile water to achieve final 
concentrations of 106, 105, 104, 103, 102, and 10 CFU·mL−1. Maize seeds were sterilized in 
75% ethanol for 2 min followed by 1% sodium hypochlorite for 10 min, and subsequently 
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washed four to five times with sterile water. These seeds were soaked in the different 
concentrations of bacterial suspensions for 12 h, placed on filter paper in petri dishes 
with a small amount of distilled water, and allowed to germinate for 3–5 days in the 
dark at 24°C. Control seeds treated with sterile water were included, and each treatment 
consisted of three replicates of 10 plants each. Germinated seeds were transferred to the 
Hoagland hydroponic cultivation system, containing the respective concentrations of the 
bacterial suspension. The hydroponic solution was replaced every 2  days. All samples 
were incubated in an artificial climate room mimicking natural maize growing conditions 
(18°C at night, 24°C during the day, and 65% relative humidity).

After 2 weeks, several parameters were assessed and recorded to evaluate maize 
seedling growth. These parameters included aerial length, aerial dry weight, and root dry 
weight. Additional metrics such as root length, root volume, and root surface area were 
measured using the Root System Analyzer (WinRHIZO, Regent Instruments Inc., Canada). 
The total leaf area was determined with the Portable Area Meter Model LI-3000C (Li-Cor, 
Lincoln, NE, USA).

Statistical analysis

Statistical comparisons among treatments were performed using one-way analysis of 
variance in GraphPad Prism 9 (v.9.5.1). The Shapiro-Wilk test was utilized to evaluate the 
normality of the data. Results are expressed as the mean ± standard deviation from three 
independent replicates. Statistical significance was defined as P < 0.05.
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