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ABSTRACT Root-associated microorganisms, particularly plant growth-promoting
rhizobacteria (PGPR) from the Bacillus genus, play a crucial role in enhancing crop
yield and health. In this study, a Bacillus strain was isolated from the rhizosphere
soil of maize and identified as Bacillus velezensis D103. The primary objective of this
research was to evaluate the potential of D103 as a PGPR. Laboratory tests demon-
strated that D103 is capable of nitrogen fixation, inorganic phosphorus solubilization,
potassium solubilization, and the synthesis of indole-3-acetic acid, ammonia, sidero-
phores, amylase, protease, cellulase, $-1,3-glucanase, and 1-aminocyclopropane-1-car-
boxylate deaminase. Additionally, D103 exhibited swimming and swarming motility,
biofilm formation, and an antagonistic activity against pathogenic fungi. Genome
mining identified genes associated with growth promotion and biocontrol activities. In a
hydroponics experiment, maize plants treated with a D103 suspension at a cell density
of 10° CFU-mL™" resulted in the most pronounced showed significant growth stimulation,
with shoot length and total root length increasing by 43% and 148%, respectively. These
results support the potential of D103 as an effective PGPR for promoting maize crop
growth.

IMPORTANCE In this study, we assessed the capacity of D103 to promote plant growth
and examined the effects of hydroponic experiments inoculated with this strain on the
growth of maize seedlings. We sequenced and analyzed the complete genome of D103,
identifying several genes and gene clusters associated with plant growth promotion and
resistance to pathogenic fungi, thus revealing the plant growth-promoting mechanisms
of this strain. The isolation and characterization of new strains with beneficial traits
are essential for expanding microbial resources available for biofertilizer production.
Collectively, these findings highlight the promising potential of Bacillus velezensis D103
as a biofertilizer for agricultural applications.

KEYWORDS  Bacillus velezensis, PGPR, genome sequencing, maize, rhizosphere

M odern agricultural practices have significantly enhanced crop yields over the
past few decades, primarily through the extensive application of fertilizers and
chemical pest control methods (1). However, the reliance on chemical fertilizers and
manure to enhance soil fertility and crop productivity has adversely effected complex
biogeochemical cycling processes (2). In response to these concerns, scientists and
farmers worldwide are adopting organic farming practices, which incorporate traditional
agricultural techniques and innovative technologies to replace chemical fertilizers and
hazardous pesticides with organic fertilizers and biological control agents (3). Conse-
quently, there is a growing focus on developing novel strategies for organic technologies
and exploring their integration with conventional agrochemicals to promote a more
sustainable and environmentally friendly agricultural system.
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Rhizosphere bacteria that facilitate plant growth by providing essential nutrients
and regulating plant processes are recognized as plant growth-promoting rhizobacteria
(PGPR) (4). PGPR are considered a promising alternative to conventional fertilizer due
to their environmentally friendly nature. These beneficial bacteria colonize the root
surface or the rhizosphere and enhance plant growth through direct mechanisms such
as biological nitrogen fixation (5), mineral solubilization, and production of various
phytohormones (6). In addition, PGPR influence plant health through indirect mecha-
nisms, including the production of siderophores (7), 1-aminocyclopropane-1-carboxylate
(ACC) deaminase activity (8), volatile organic compound (VOCs) (9), antifungal activ-
ity, and induced systemic resistance (ISR) (10). Numerous genera of PGPR have been
extensively studied and applied globally to evaluate their plant growth-promoting (PGP)
potential, including Agrobacterium (8), Bacillus (11), Burkholderia (12), and Pseudomonas
(11). These PGPR have demonstrated significant value in sustainable crop production.

Numerous Bacillus spp. have been recognized as PGPR and are commercially
employed as biofertilizers due to their ability to produce resistant endospores, suppress
pathogens, and promote plant growth (13). Among these, Bacillus amyloliquefaciens,
Bacillus licheniformis, and Bacillus subtilis are the most extensively utilized species (14).
In 1999, Bacillus velezensis (CR-502") was originally isolated from environmental samples
collected from the estuary of the Vélez River, Spain (15). Recently, several strains of
B. velezensis have gained significant interest for their PGP capabilities, enhancing yield
and improving product quality in both greenhouse experiments and field trials (16,
17). B. velezensis FZB42 has been formulated into a commercially available inoculant,
RhizoVital, to control various soilborne diseases and promote plant growth (18). Genome
sequencing strategies have facilitated the investigation of plant growth-promoting
genes and secondary metabolite gene clusters in Bacillus strains, aiding in the identifi-
cation of potential PGPR or biocontrol agents (19). Consequently, genetic studies and
whole-genome comparisons are highly effective tools for understanding the biological
characteristics of PGPR strains.

This study aimed to investigate the PGP properties of B. velezensis D103, isola-
ted from the maize rhizosphere. Specifically, the study evaluated (i) potential nutri-
tional contributions, including mineral solubilization and siderophore production; (ii)
biochemical and enzymatic functions; (iii) antagonistic effects against fungal pathogens;
(iv) genomic analysis and comparative genomics to elucidate the genetic basis of PGP
activities and phytopathogen antagonism; and (v) the impact on maize growth.

RESULTS
Identification of strain D103

The morphological examination identified that D103 is a Gram-positive strain capable
of spore production. Molecular identification was performed through sequencing of
the 16S ribosomal RNA (rRNA) gene (1,547 bp). Basic Local Alignment Search Tool
analysis and phylogenetic tree results confirmed that D103 was Bacillus velezensis (Fig.
1a). Average nucleotide identity (ANI) results showed that D103 shared more than
98.5% homology with Bacillus velezensis GH1-13, Bacillus amyloliquefaciens WF02, Bacillus
amyloliquefaciens MBE1283, Bacillus velezensis B1, and Bacillus amyloliquefaciens T-5, with
Bacillus velezensis GH1-13 showing the highest level of similarity (Fig. 1b; Fig. S1).

Characterization with beneficial traits of strain D103

To understand the mechanisms behind the plant growth-promoting effects of strain
D103, we evaluated its capacity for nitrogen fixation, inorganic phosphate solubilization,
potassium solubilization, and indole-3-acetic acid (IAA) production. Strain D103 demon-
strated nitrogen-fixing ability through its growth on nitrogen-free media (Fig. 2a).
Nitrogenase activity, measured using the acetylene reduction assay, was 102.49 nmol
ethylene-ml™h™" (Table 1). Additionally, incubation with Pikovaskaia inorganic phos-
phate medium and Aleksandrov potassium-solubilizing medium resulted in clear zones
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FIG 1 Taxonomic classification of Bacillus sp. downloaded from the National Center for Biotechnology Information Reference Sequence Database. (a)Phyloge-

netic tree depicting the relationships among Bacillus velezensis D103 and various other Bacillus strains based on 16S rRNA gene sequences. Phylogenetic

relationships were determined using a maximum parsimony method, with support values derived from 1,000 replicates. (b)Pairwise average nucleotide identity

(ANI) results between 42 Bacillus genomes. The similarity among all genomes is represented by a dendrogram using average linkage hierarchical clustering with

tree heights corresponding to ANI similarity. Blue branches indicate most of the Bacillus genomes, while red branches represent different genomes of Bacillus

licheniformis sp.

around D103 colonies, indicating its proficiency in solubilizing inorganic phosphorus and
potassium (Fig. 2b and c). Quantitative assessments revealed that D103 solubilized
inorganic phosphate at a concentration of 68.67 mg-L™" (Table 1). Furthermore, strain
D103 produced IAA, as demonstrated by the Salkowski test (Fig. 2e), with ultra-perform-
ance liquid chromatography (UPLC) analysis showing a production level of 31.60 mg-L™
(Fig. S2; Table 1).

Strain D103 produces ammonia and siderophores, possesses surface motility,
and forms biofilms

Strain D103 produced ammonia, as indicated by the brown coloration of the culture
liquid following the addition of Nessler’s reagent, confirming a positive result (Fig. 2j).
The appearance of a yellow color around D103 colonies on Chrome Azurol S (CAS)
agar medium further demonstrated the strain’s ability to produce siderophores (Fig. 2d).
Motility assessments were conducted on media with varying agar concentrations (0.3%
for swimming and 0.7% for swarming). The maximum colony diameter of D103 was
observed after 12 h on swimming media and after 18 h on swarming media (Fig. S3).
Additionally, strain D103 formed biofilm, as determined by the crystal violet staining
method (Table 1). Quantitative analysis of the extracellular polymeric substance (EPS)
extracts revealed that the EPS of D103 comprised 58.73 mg:L™" of polysaccharides,
32.05 mg-L™ of proteins, and 8.07 mg-L™" of nucleic acids (Table 1).

In vitro hydrolytic activity of strain D103

In the in vitro analysis (Fig. 2f through i; Table 1), strain D103 demonstrated hydrolytic
activity, producing cellulase, protease, amylase, -1,3-glucanase, and ACC deaminase.
The enzyme activities measured for D103 were 254.89 U-mL™", 545.52 U-L™", 6304.55 U-L™",
150.83 U-L™" and 32.55 IU-mL™", respectively.
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TABLE 1 Plant growth-promoting factors and hydrolytic enzymes produced by Bacillus velezensis D103 at
different concentrations

Characteristics Activity rate
Nitrogenase activity 102.49 + 3.40 nmol ethylene-m|™-h™"
Inorganic phosphate solubilization 68.67 £4.19 mg-L™"
IAA production 31.60+2.15mg-L™
Biofilm production 1.121 £ 0.094
Polysaccharides of EPS’ 58.73+3.25mg-L™
Proteins of EPS 32.05+0.66 mg-L™'
Nucleic acids of EPS 8.07 +0.87 mg-L™
Amylase activity 6304.55 +354.78 U-L™"
Cellulase activity 254.89 +21.84 UmL™
Protease activity 545,52 +55.63 U-.L™
ACC deaminase activity 32.55+0.92 lUmL™
3—1,3-Glucanase activity 150.83 +4.22 U-L™

9EPS, extracellular polymeric substance.

Antagonistic activity against fungal pathogens

In vitro analyses involving five plant pathogenic fungi, demonstrated that strain D103
effectively inhibited the growth of Fusarium graminearum, Athelia rolfsii, Fusarium
thapsinum, Gibberella fujikuroi, and Gibberella moniliformis (Fig. 3).

Genomic characterization of strain D103

The genomic characterization of strain D103 is shown in Fig. 4a, highlighting key
features. The genome consists of a circular chromosome measuring 3,857,531 bp, with
an average guanine-cytosine (GC) percentage in DNA (GC content) of 46.7%. It contains
3,884 protein-coding genes, 27 rRNA genes, and 86 transfer RNA (tRNA) genes. Func-
tional analysis of the genome sequences was performed using the Cluster of Ortholo-
gous Groups of Proteins (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Gene
and Genomes (KEGG) databases. The assignments of the genes in these databases are
presented in Table 2; Fig. 4.

Among the 3,884 genes present in the D103 genome, 3,239 genes were categorized
into 19 categories of the COG database, while 645 genes remained uncategorized (Fig.
4b; Table 2). The largest number of genes was classified into the category of functionally

Microbiology Spectrum

FIG 2 Experimental assessments of plant growth-promoting and hydrolytic enzyme production properties in strain D103. (a) Nitrogen fixation, (b) inorganic

phosphorus solubilization, (c) potassium solubilization, (d) siderophore production, (e) IAA production, (f) cellulase production, (g) protease production,

(h) amylase production, (i) 3-1,3-glucanase production, and (j) ammonia production.
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FIG 3 Antifungal activity of strain D103 against various plant pathogenic fungi. (a1 through e1) Placement of a 1-cm agar plug in the center of each potato
dextrose agar plate. (a2 through e2) Incubation of strain D103 3.5 cm away from the fungal plugs. Pathogenic fungi included (a) Fusarium graminearum,
(b) Athelia rolfsii, (c) Fusarium thapsinum, (d) Gibberella fujikuroi, and (e) Gibberella moniliformis.

unknown proteins (S), comprising 23.02% with 894 genes. This was followed by amino
acid transport and metabolism (E) with 263 genes (6.78%), transcription (K) with 257
genes (6.62%), carbohydrate transport and metabolism (G) with 225 genes (5.79%), cell
wall/membrane/envelope biogenesis (M) with 195 genes (5.02%), and energy produc-
tion and conversion (C) with 179 genes (4.61%).

TABLE 2 Functional categorization of the genome of strain D103 in the COG database

COG categories  Category function ORF* number
A RNA processing and modification 0

B Chromatin structure and dynamics 0

C Energy production and conversion 179
D Cell cycle control, cell division, and chromosome partitioning 30
E Amino acid transport and metabolism 263
F Nucleotide transport and metabolism 79
G Carbohydrate transport and metabolism 225
H Coenzyme transport and metabolism 116
| Lipid transport and metabolism 90
J Translation, ribosomal structure, and biogenesis 161
K Transcription 257
L Replication, recombination, and repair 129
M Cell wall/membrane/envelope biogenesis 195
N Cell motility 34
(0] Posttranslational modification, protein turnover, and chaperones 94
P Inorganic ion transport and metabolism 182
Q Secondary metabolites biosynthesis, transport, and catabolism 86
R General function prediction only 0

S Function unknown 894
T Signal transduction mechanisms 138
U Intracellular trafficking, secretion, and vesicular transport 31
\ Defense mechanisms 56
w Extracellular structures 0

Y Nuclear structure 0

z Cytoskeleton 0

9ORF, open reading frame.
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TABLE 3 Comparative genomic analysis of B. velezensis D103, B. velezensis FZB42, B. velezensis ENO1, B. subtilis 168, and B. amyloliquefaciens X030

General genomic characterization B. velezensis D103  B. velezensis FZB42 B. velezensis ENO1  B. subtilis 168 B. amyloliquefaciens X030

NCBI accession CP095093 NC_009725.2 NZ_CP053377.1 NZ_CP010052.1 NZ_CP040672.1
Size (bp) 3,857,531 3,918,596 4,029,600 4,215,619 3,952,640

G + C content (mol%) 46.7 46 46.5 43,5 46.5

Total genes 3,884 3,877 4,002 4,426 3,907

rRNA 27 29 27 30 27

tRNA 86 88 86 86 84

Genomic Island 5 3 17 24

Prophage 2 2 6 4

The GO database identified 2,678 genes in D103. Among these, 1,364 genes were
associated with molecular functions related to binding; 19 genes were associated
with cell motility; and 5 genes were associated with locomotion. These functions are
associated with the strain’s ability to form biofilms and colonize plant tissues (20) (Fig.
4¢). Using the KEGG database, we assessed the potential involvement of D103 genes in
biological pathways, resulting in the classification of 2,152 genes. The KEGG pathway
analysis categorized these genes into 40 functional pathways. The most represented
pathways included carbohydrate metabolism (256 genes), amino acid metabolism (371
genes), amino acid metabolism (285 genes), metabolism of cofactors and vitamins (155
genes), membrane transport (140), and signal transduction (139 genes) (Fig. 4d).

Comparative genetic characterization among Bacillus spp.

Comparative genomic characterization was conducted among Bacillus spp., including
reference strains Bacillus velezensis FZB42, Bacillus velezensis ENO1, Bacillus subtilis
168, and Bacillus amyloliquefaciens X030. Genome sequences were obtained from the
National Center for Biotechnology Information (NCBI) database and compared with
strain D103, as presented in Table 3. These five strains demonstrated overall similarity
in genome size and the number of coding genes. However, differences in the number of
genomic islands and prophages were observed, potentially contributing to variations in
their genetic profiles. Genomic islands and prophages serve as mobile genetic elements
facilitating horizontal gene transfer and play a role in bacterial adaptation and evolution
(21).

Core-genome plot analyses of the five Bacillus genomes revealed a total of 1,744
genes across these species (Fig. 5a). The distribution showed that 3,135 genes were
shared between D103 and Bacillus subtilis 168; 2,181 genes were shared between D103
and Bacillus amyloliquefaciens X030; and 2,655 genes were shared between D103 and
Bacillus velezensis ENO1. Additionally, 3,353 genes were common between D103 and
Bacillus velezensis FZB42. D103 shared a considerable number of genes with B. velezen-
sis FZB42 and B. subtilis 168, suggesting potential similarities with these strains as
PGPR. Compared to the other four Bacillus strains, D103 contained 358 distinct genes.
Among these, 335 genes were associated with assumed proteins and proteins with
unknown function, while 21 genes were linked to proteins of known function, including
terpene synthase (WP_077722691.1), damage-inducible protein DinB (WP_082998055.1),
SAM-dependent methyltransferase (EYB36085.1), NUDIX hydrolase domain-containing
protein (AJK64336.1), protein kinase, sporulation protein, and transcriptional regulator,
as listed in Table S1.

To assess genetic relationships, whole-genome sequences of the five strains were
analyzed using the Mauve program (Fig. 5b). The analysis revealed significant local
collinear block (LCB) inversions and gene insertions or deletions in strain D103 rela-
tive to Bacillus amyloliquefaciens compared to X030 and Bacillus subtilis 168. However,
D103 showed greater genetic similarity to Bacillus velezensis FZB42, with no significant
insertions or deletions or LCB inversions observed compared to FZB42 and Bacillus
velezensis ENO1.
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The annotation analysis of predicted amino acid sequences from strain D103 and
four other Bacillus strains (FZB42, ENO1, 168, and X030) using the dbCAN carbohy-
drate-active enzyme (CAZyme) database revealed that the D103 genome contains 193
CAZymes. These include 40 glycoside hydrolase (GH) enzymes, 34 glycosyltransferase
(GT) enzymes, 17 carbohydrate esterases (CEs), three polysaccharide lyase (PL) enzymes,
six auxiliary activities (AAs), and six carbohydrate-binding module (CBM) proteins (Table
4). Enzymes identified in D103, FZB42, ENO1, and X030 involve acetylxylan esterase (CE
family 6) (EC 3.1.1.72) and monooxygenases (AA family 10), such as lytic xylan mono-
oxygenase/xylan oxidase (glycosidic bond-cleaving) (EC 1.14.99.-), lytic chitin monooxy-
genase (EC 1.14.99.53), lytic cellulose monooxygenase, lytic cellulose monooxygenase
(C1-hydroxylating) (EC 1.14.99.54), and lytic cellulose monooxygenase (C4-dehydrogen-
ating) (EC 1.14.99.56). These enzymes were found in D103, FZB42, ENO1, and X030
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TABLE 4 Comparative analysis of predicted carbohydrate-active enzyme families in B. velezensis D103, B.
velezensis FZB42, B. velezensis ENO1, B. subtilis 168, and B. amyloliquefaciens X030

CAZymes B.velezensis  B.velezensis B.velezensis B.subtilis B.amyloliquefaciens
D103 FZB42 ENO1 168 X030

GH 40 41 42 58 42

GT 34 34 35 39 34

CE 17 17 17 18 17

PL 3 3 3 7 3

AA 6 6 6 5 6

CBM 6 6 6 14 6

but were absent in 168.While the numbers of CAZymes varied among strains, no
CAZymes were discovered in D103, indicating similarities in their environmental habitat
and nutritional sources. Differences in microbial ability to depolymerize and metabolize
sugars may suggest ecological role differentiation to mitigate competition for resources
(22).

Genomic analysis of D103 using antiSMASH identified 13 secondary metabolite gene
clusters: four NRPS, three TransAT-PKS, two terpenes, one lanthipeptide, and one other
KS. These clusters are involved in the biosynthesis of various compounds, including
andalusicin A/andalusicin B, surfactin, butirosin A/butirosin B, macrolactin H, bacillaene,
fengycin, difficidin, bacillothiazol A-N, bacillibactin, and bacilysin (Table 5). Comparison
of the secondary metabolite gene clusters in D103 with those in FZB42, X030, ENOT,
and 168 (Fig. 6) revealed that five clusters (2, 4-7) were present in each of the Bacillus
strains. Additionally, four clusters (3, 5, 9, and 10) were shared by D103, FZB42, ENO1, and
X030; two clusters (12 and 13) were common to D103, FZB42, ENO1, and 168; and one
cluster (11) was found in both D103 and FZB42. Furthermore, three clusters (4, 8, and 9)
were associated with unknown compounds. A distinctive cluster (1) responsible for the
production of andalusicin A/andalusicin B was present only in D103.

Plant growth-promoting genes in D103 strain

The D103 genome contains numerous genes predicted to be involved in plant growth-
promoting activities (Table S2). Among these, moa clusters (moaA-E), responsible for
encoding molybdenum cofactors, were identified, suggesting a possible role in nitrogen-
fixing gene clusters or cofactors, essential for nitrogen assimilation (23). Additionally,
D103 encodes critical elements such as sensor histidine kinase (g/nK), a gene cluster for
nitrate transport and reduction (nasD-F), HTH-type transcriptional regulators (tnrA and
glnR), glutamine synthetase (nifS), ammonium transporter (nrgA), nitrogen regulatory
Pll-like protein (nrgB), a gene cluster for urease subunit (ureA-C), a gene cluster for
nitrate reductase (narG-J), a probable transcription regulator (arfM), and nitrite extrusion
protein (nark). These components contribute to facilitating nitrogen assimilation (24).
The genome of D103 revealed the presence of 19 phosphatase genes involved in
phosphorus solubilization. Additionally, D103 contained potassium transporter genes,
including K*/H" antiporter subunits (khtS-U), ktr system potassium uptake proteins (ktrA,
ktrC, and ktrD), and putative potassium channel protein (yugO) (25). Furthermore, the
D103 genome included magnesium transporter genes (mgtE, corA) (26), manganese
assimilation-related genes (mntH, mntR, and mntP) (27), iron assimilation-related genes
(yclQ, yusV, and yvrA-C) (28), and a cluster of bivalent cation assimilation-related genes
(tuaA-H). These genes were hypothesized to play crucial roles in mineral element uptake
and the detoxification of heavy metal ions in both bacteria and plants.

PGPR produce VOCs that have the potential to serve as environmentally friendly
alternatives to chemical fertilizers. These compounds, including 2,3-butanediol, enhance
plant growth by improving nutrient availability, inducing metabolic activities, and
stimulating defense responses (29). Analysis of the D103 genome revealed the als gene
cluster (alsD, alsS, and alsR) and (R,R)-butanediol dehydrogenase (bdhA), key components
of the biosynthetic pathway for 2,3-butanediol from pyruvate (30). Additionally, we
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identified the acu gene cluster (acuA-C) responsible for encoding acetoin, a compound
known to promote the development of ISR in plants (31).

The genome of D103 contains genes involved in trehalose biosynthesis (treP, treA,
and treR), spermidine and polyamine biosynthesis (speA, speH, speB, speE, and msmX),
and siderophore biosynthesis (dbhA, dbhB, dbhC, dbhE, and dbhF). These gene clusters
contribute to promoting plant growth and inhibiting the growth of plant pathogens
(32-34). Additionally, D103 contains 12 genes involved in IAA biosynthesis, utilizing
pathways such as indole-3-acetonitrile (yhcX, trpA-F, trpP, and trpS) and indole-3-pyru-
vate (dha$) for IAA synthesis (35). Furthermore, the genome includes genes related
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TABLE 5 Comparative analysis of secondary metabolite gene clusters in Bacillus velezensis D103 and four other Bacillus strains (FZB42, X030, ENO1, and 168)

D103 Gene cluster location Presence (+) or absence (-)

Cluster Type From To Compound Size (kb) FZB42 ENO1 168 X030

number

1 Lanthipeptide 193,743 216,358 Andalusicin A/ 22,615 - - - -

andalusicin B

2 NRPS 311,522 376,328 Surfactin 64,806 + + + +

PKS-like 894,710 935,954 Butirosin A/ 41,244 + + - +
butirosin B

4 Terpene 1,020,841 1,037,485 Unknown 16,644 + + + +
TransAT-PKS 1,337,888 1,425,686 Macrolactin H 87,798 + + - +
TransAT-PKS, T3PKS, 1,645,193 1,745,891 Bacillaene 100,698 + + + +

NRPS
7 NRPS, TransAT-PKS, 1,812,907 1,947,038 Fengycin 134,131 + + + +
Betalactone

8 Terpene 1,975,295 1,997,178 Unknown 21,883 + + + +

9 T3PKS 2,060,900 2,102,000 Unknown 41,100 + + - +

10 TransAT-PKS 2,229,868 2,323,605 Difficidin 93,737 + + - +

11 NRPS 2,815,113 2,864,622 Bacillothiazol A-N49,509 + - - -

12 NRPS, RiPP-like 2,965,190 3,016,986 Bacillibactin 51,796 + + + -

13 Other 3,535,967 3,577,385 Bacilysin 41,418 + + -

to auxin excretion (ywkB) and IAA acetylation (ysnE), indicating involvement in the
tryptophan-independent IAA biosynthetic pathway (19). The presence of phytase genes
(phy) suggests the potential to degrade phytate, thereby promoting plant growth under
phosphate-limited conditions (31).

Effective biofilm production by PGPR enhances their adherence to plant roots and
augments plant growth-promoting activities (36). Flagella, motility, and chemotaxis play
important roles in all stages of biofilm formation (37). D103 possesses genes associated
with bacterial chemotaxis (che gene cluster and mcpA-C), flagellar assembly (fli cluster,
flg cluster, flh cluster, motAB), and swarming motility (swrB-D and swrAA, efp). Genes
involved in the initial stages of biofilm formation, including histidine kinases (kinA-D),
master regulators (spo0OA, spoOB, spoOE, spoOF, and spo0J), and transcriptional regula-
tors (17 genes), were identified in the genome of D103. Components of the biofilm
matrix, including secreted proteins (TasA, TapA, and BslA), mineral scaffolds, extracellular
DNA, and extracellular polysaccharides (eps gene cluster: epsC-O), were also present.
Additionally, genes related to biofilm surface formation (yuaB), colony biofilm strength
(pgsA), and the development of multicellular communities (ecsB, yIbF, ymcA, and ygeK)
were identified in the D103 genome (38).

Based on comparative genomic analyses (Table S3), 199 PGP genes were identified
in the D103 genome. Bacillus velezensis FZB42 and Bacillus subtilis 168 shared the
most PGP genes with D103, 198 and 195, respectively. Notably, FZB42 was devoid of
sig, a gene involved in the transcriptional regulation of biofilm formation, while 168
was devoid of ybjl, a gene associated with phosphorus assimilation; tuaA, a gene for
divalent cation assimilation; trpC, a gene for IAA biosynthesis; and swarming motility
gene swrAA. Bacillus velezensis ENO1 contains 153 PGP genes shared with D103, whereas
Bacillus amyloliquefaciens X030 exhibits the lowest number of PGP genes with D103,
with only 126 shared genes. Compared to other strains, fewer genes associated with
swarming motility, flagellar assembly, and biofilm formation were identified in the
genomic comparisons between D103 and both ENOT and X030.

Plant growth-promoting capacity of strain D103

In a hydroponic cultivation system, maize plants were exposed to a range of D103
cell suspension concentration from 10 to 10° CFU-mL™". Growth parameters assessed
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included shoot length (aerial parts), total leaf area, and both fresh and dry weights of
the aerial parts. Root development was evaluated based on total root length, surface
area, volume, and fresh and dry weight. The results demonstrated a significant impact of
D103 cell suspension concentrations on maize plant growth (Fig. 7a; Fig. S4). Specifically,
maize seedlings treated with a 10° CFU-mL™" D103 cell suspension exhibited significant
increases in shoot length and total leaf area, showing 43% and 60% enhancements
(P < 0.001), respectively, compared to the control group. Additionally, these seedlings
demonstrated superiority with total root length reaching 193.62 cm (148% higher than
the control), a root surface area of 36.46 cm? (114% higher than the control), and a root
volume of 0.54 cm® (86% higher than the control) (Fig. 7b through e). Moreover, the dry
weights of both aerial parts and roots of maize treated with the 10* CFU-mL™" D103 cell
suspension were significantly increased compared to the control (P < 0.001) (Fig. S5).
These findings indicate that a D103 cell suspension concentration of 10° CFU-mL™ is
optimal for enhancing maize plant growth and development.

DISCUSSION

The application of PGPR as biofertilizer represents a viable approach for advancing
sustainable agriculture intensification (39). The isolation of Bacillus strain D103 from
maize rhizosphere soil, combined with phenotypic and phylogenetic analyses, estab-
lished its classification as Bacillus velezensis. This specie is distinguished by its resilience
to adverse environmental conditions, secretion of diverse hydrolytic enzymes, enhanced
plant growth, exertion of antagonistic effects on phytopathogens, and maintenance
of a favorable safety profile, highlighting its significant agricultural potential (40, 41).
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Accordingly, Bacillus velezensis D103 demonstrates potential as a PGPR for agricultural
applications. This investigation involved a comprehensive characterization of D103 to
evaluate its efficacy in promoting plant growth.

Nitrogen is an essential element for plant growth, and nitrogen-fixing bacteria
play a crucial role in fixing atmospheric nitrogen into a form that can be utilized by
plants, thereby enhancing the soil nitrogen reservoir (5). In this study, Bacillus velezen-
sis D103 demonstrated nitrogen-fixing capabilities and thrived in nitrogen-deficient
environments. Previous research has established that nitrite reductase, a crucial enzyme
nitrogen fixation, is encoded by the nas operon. This operon activates transcription by
binding to motifs within the TnrA promoter, thereby enhancing the conversion of nitrite,
nitrate, and urea into ammonium (42). Twenty-four nitrogen assimilation genes including
nasDEF and tnrA were identified in the D103 genome. Additionally, D103 demonstrated
ammonia production, a primary nitrogen source for plants, consequently promoting
plant growth. The nitrogen-fixing potential of D103 was demonstrated by acetylene
reduction analysis assay.

Phosphorus is a crucial macronutrient for plant growth and development. Due
to its rapid immobilization, rendering it inaccessible to plants, phosphate-solubilizing
bacteria are essential for converting insoluble phosphorus into bioavailable forms
(43). Strain D103 demonstrated the ability to solubilize inorganic phosphorus, thereby
enhancing phosphorus availability for plants. Nineteen genes associated with phosphate

December 2024 Volume 12 Issue 12

n=10).

10.1128/spectrum.01147-24 12

Downloaded from https://journals.asm.org/journal/spectrum on 05 December 2024 by 121.234.23.121.


https://doi.org/10.1128/spectrum.01147-24

Research Article

Nitrate

Nitroalkane ——p Nitrite

iz

Ammonia
¢ Gind
L-Glutamine I

Microbiology Spectrum

{\"\ Phosphorus
./ assimilation

PhoD, YcsE, RsbU, RsbX,YfkJ,

YhcW, PhoA, PhoE, YjbK, PrpE,

SuhB, PrpC, ResD, PstB, PstS,
YqeG, Ybjl, PhoR, PhoP

Potassium
assimilation

KhtU, KhtT, KhtS, KtrD,
KtrC, KtrA, YugO

L L-Glutamate
/;

o gy o‘%

)
‘\\\‘ \\o“ ss,,bl’es “Us
’910"0;
20 Indole-3-acetaldehyde
DbhA, DbhB, DbhC, 0 Bacillus 2
DbhE,.quhF §% velezensis =~ < < l
& @ D103 5>
T 9 & Indole-3-acetate
n 2 o

\‘ ) Control D103
: N o ‘
G’o,e. 6° o®

0,
7. 17y,
Ns, 1 2
%, é\\ e‘(\v
(7] 99

".|(epsC~0)

FIG 8 Bacillus velezensis D103 possesses beneficial metabolic pathways and genes associated with plant growth-promoting rhizobacteria.

solubilization, including pstBS and phoADEPR, were identified in strain D103. The pst,
a phosphate transport system permease, potentially increases phosphate uptake and
bioavailability under phosphate-limited conditions (44). Similarly, Torres et al. (45)
reported the presence of the organic phosphorus mineralization gene (phoACDX) and
the P-starvation response regulatory gene (phoBPR) in the Bacillus sensu lato genome.
The phosphorus assimilation gene in D103 increases phosphate utilization in the host
plant.

Auxin, particularly IAA, is a critical regulator of plant growth and development,
influencing numerous processes, including seedling growth and root formation (46).
Previous research has shown that inoculation with IAA-producing Bacillus amyloliquefa-
ciens can promote lateral root growth, elongation, and root hair formation in plants such
as Arabidopsis thaliana (47). This study demonstrated that D103 exhibited IAA produc-
tion, potentially stimulating root development in the host plant. Notably, plant roots
release tryptophan in the rhizosphere, serving as a substrate for IAA biosynthesis by
rhizobacteria (48). In this study, 12 genes identified in the D103 genome were putatively
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involved in IAA biosynthesis, including dha$, encoding aldehyde dehydrogenase, an
enzyme crucial for converting indole-3-acetaldehyde to IAA in the indole-3-pyruvic
acid (IPyA) pathway. Studies on Bacillus amyloliquefaciens SQR9 have demonstrated
that mutation of the dhaS gene reduces IAA production to only 23% of wild-type
levels (49). These findings suggest that the IPyA pathway is a significant contributor
to IAA biosynthesis in D103. Furthermore, D103 possessed genes for synthesizing other
potentially beneficial hormones, including trehalose, and phytase. Similar to findings in
other bacterial strains, these hormones are implicated in promoting plant growth and
enhancing plant tolerance to diverse environmental stresses (50, 51).

Iron, which typically presents in soil as insoluble trivalent Fe** hydroxide, is not readily
assimilated by plants. Siderophores, produced and secreted by bacteria, facilitate the
uptake of iron into plant cells (52). The dhbA-F operon plays a crucial role in siderophore
biosynthesis. Studies have shown that mutants lacking the AdhbA gene are unable
to dehydrogenate (2S5,35)-2,3-dihydroxy-2,3-dihydrobenzoate to 2,3-dihydroxybenzoate
(DHB) (53). This inability disrupts extracellular electron transport with ferric iron captured
by DHB. This study revealed that D103 possesses the ability to produce siderophores
and contains a dhb cluster in its genome. Notably, the siderophores produced by D103
contributed to biocontrol by competing for iron, thereby reducing its availability to
pathogens (53). The results demonstrated that D103 enhanced Fe** availability under
iron-deficient conditions, which was a key factor promoting maize seedling growth.

Colonization of the plant rhizosphere by bacterial strains is the initial and most crucial
step in promoting plant growth and health. Genes associated with motility, chemotaxis,
adhesion, and biofilm formation are believed to contribute to colonization (54). While
swimming has been identified as the primary mechanism for movement in liquid
media, swarming is considered more significant in natural soil environments. In these
conditions, dynamic multicellular rafts are formed as groups of cells that move rapidly
across solid surfaces, potentially enhancing nutrient acquisition. This phenomenon
has been observed in Bacillus amyloliquefaciens T-5 colonization nutrient-rich tomato
roots (55, 56). The study highlighted the swimming, swarming, and biofilm formation
abilities of strain D103, and identified a large number of genes in its genome associated
with bacterial chemotaxis, flagellar assembly, swarming motility, and biofilm formation.
Bacteria forming biofilms have been reported to exert more beneficial effects on plant
growth compared to their planktonic cells counterparts. For instance, Pseudomonas
azotoformans FAP5 contributes to root colonization and improves wheat performance
under stressful conditions (57, 58). Therefore, these characteristics are essential for D103
adaptation, persistence under varying environmental conditions, and the promotion of
maize growth.

Biological control of rhizosphere microbes provides host plants natural protection
against pathogens (59). The production of secondary metabolites by antagonistic
bacteria is the primary mechanism of disease suppression (60). In this study, we
identified 13 secondary metabolite gene clusters with antimicrobial activity in the
genome of D103. Combined with observed antifungal results, these findings suggested
the significant biocontrol potential of D103 as an inoculum. This outcome aligns with
previous reports emphasizing the secondary metabolite potential of B. velezensis strain
(61). Notably, D103 contained a unique cluster of genes responsible for synthesizing
andalusicin A and andalusicin B, a novel family of class Il lantibiotics derived from
Bacillus thuringiensis subsp. andalousiensis NRRL B23139. This cluster demonstrated
biological activity directed at Bacillus cereus and related species (62). These findings
emphasize the promising potential of D103 for managing plant pathogens in agricultural
applications.

Finally, the direct impact of D103 on plant growth was evaluated, revealing a
significant enhancement in maize growth when applied at the appropriate concentra-
tion. Numerous studies have demonstrated that PGPR stimulate plant root growth and
increase root fresh and dry weight, thereby enhancing nutrient uptake (63, 64). D103
increased the length and surface area of corn root structures, offering benefits for
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improved ion uptake and nutrient storage. Similarly, other strains of Bacillus velezensis,
such as SQR9, have been shown to promote cucumber growth through various PGP
mechanisms (65). Collectively, these results suggest that D103 has potential as both a
maize plant growth promoter and a natural biocontrol agent against plant pathogens.

Conclusion

Bacillus velezensis D103 was evaluated for its plant growth-promoting properties,
demonstrating its potential to increase maize plant height and enhance root develop-
ment. Genomic analyses further validated the findings from in vitro assays and hydro-
ponic plant experiments, confirming the efficacy of D103’s role as PGPR. The genomic
analysis revealed the presence of a multitude of genes potentially involved in plant
growth promotion. Collectively, these findings strongly suggest that D103 is a promising
candidate for biofertilizer development, with potential application as a single inoculant
or as part of a microbial consortium (Fig. 8)

MATERIALS AND METHODS
Isolation and culture conditions of bacteria

Soil samples were collected from the rhizosphere of maize in an experimental field at
the Haicheng Branch Campus of Shenyang Agricultural University in Haicheng, China
(latitude 40°98°08 N, longitude 122°72°64 E). The field was situated at an elevation of
14.3 m above sea level and had been cultivated with maize crop for >5 years. The area
experiences extreme annual temperature variations (—30°C to 34.4°C) and an average
annual rainfall of 652 mm. Soil samples were collected in June 2020, and the maize
rhizosphere bacterium D103 was isolated using the gradient dilution technique to assess
its potential for promoting plant growth. The bacterial strain was cultured in Luria-Ber-
tani (LB) medium, composed of 0.5% yeast extract, 1% sodium chloride, and 1% peptone,
with 1.5% agar added for solidification. For long-term preservation, pure cultures were
stored at —80°C in an LB medium supplemented with 20% glycerol (vol/vol).

Identification of the strain

Gram staining and spore morphology of the bacterial strain were examined microscop-
ically. The 16S rRNA gene was subjected to colony polymerase chain reaction (PCR)
using forward primer 27F (5-AGAGTTTGATCCTGGCTCAG-3’) and reverse primer 1492R
(5"-GGTTACCTTGTTACGACTT-3’) (66). The PCR cycling parameters were as follows: initial
denaturation at 94°C for 3 min, followed by 30 cycles of denaturation at 95°C for 40
seconds, annealing at 56°C for 40 seconds, and elongation at 72°C for 90 seconds,
with a final extension step at 72°C for 10 min. Purified PCR products were sequenced
using an ABI 3730 Genetic Analyzer (Applied Biosystems). The obtained sequences were
compared with reference sequences from the NCBI database using Basic Local Alignment
Search Tool for Nucleotides software. Reference 16S rRNA sequences were retrieved
from GenBank. Sequence alignment was performed using MAFFT (https://mafft.cbrc.jp/
alignment/server/). A phylogenetic tree was generated using FastTree (v.2.1.7) (67) with
1,000 bootstrap replicates, and the tree was visualized using ITOL online tool (https://
itol.embl.de).

Assessment of in vitro plant growth-promoting capacity

To evaluate the nitrogen-fixing capability of strain D103, Ashby’s nitrogen-free agar
medium was utilized (68). The ability of D103 to grow on this medium indicated
its nitrogen-fixing potential. Nitrogenase activity was quantified using the acetylene
reduction assay and gas chromatography (GC) as described by Swamy et al. (69). Briefly,
strain D103 was inoculated into nitrogen-free Ashby’s medium and incubated for 48
h at 37°C with shaking at 180 rpm. Subsequently, 2 mL of the culture was transferred
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to 45 mL of Ashby semisolid medium for further incubation. Afterwards, 25 mL of the
enriched culture was transferred to 100-mL vials. A sterile syringe replaced 10 mL of
air with equivalent acetylene gas and was incubated for 24 h. Nitrogen fixation was
assessed by measuring ethylene production using the acetylene reduction assay. The
ethylene produced was analyzed using gas chromatography (Shimadzu GC 2010PLUS,
Japan) equipped with a flame ionization detector. The chromatographic column used
was packed with alumina (3-m length, 0.53-mm diameter). The GC conditions were
as follows: oven temperature was maintained at 80°C, while the injector and detector
temperatures were set at 165°C. Nitrogen gas and hydrogen gas flow rates were each 40
mL-min~', and the air flow rate was 45 mL-min~'. A 1-mL gas sample was injected, and
the peak area for ethylene was measured in relation to a standard ethylene. Ethylene
production was expressed as nanoliters of ethylene formed per milliliter of medium per
hour at 37°C.

To assess the phosphorus-solubilizing potential of strain D103, modified Pikovaskaia’s
agar medium was utilized (70). The inoculated plates were incubated at 37°C for 7
days. Phosphorus solubilization was assessed by observing the formation of clear zones
around the colonies. The amount of solubilized phosphorus was quantified using the
phosphomolybdate method (71).

To assess the potassium-solubilizing capability of strain D103, the Aleksandrov agar
medium was used (72). The plates inoculated with the strain, were incubated at 37°C
for 7 days. The potassium-solubilizing potential of D103 was determined by observing
the formation of clear zones around the colonies, which indicated positive potassium
solubilization.

IAA production was assessed using the method described by Mahdi et al. (73),
involving the application of Salkowski’s reagent. A color change from yellow to pink
indicated IAA production. Quantification of IAA was carried out by UPLC following the
method described by Shah et al. (74). Briefly, D103 was inoculated into 500 mL of LB
medium supplemented with 0.5% L-tryptophan and incubated at 37°C with shaking at
180 rpm for 7 days. The culture liquid phase was centrifuged at 6,500 rpm for 10 min,
acidified to pH 2.5-3.0 with 1-N HCl, and extracted with an equal volume of ethyl acetate.
The ethyl acetate phase was evaporated under vacuum using a rotary evaporator at 40°C,
and the residue was redissolved in T mL of methanol and stored at —20°C. UPLC analysis
was performed using a Waters H-Class system (Milford, MA, USA) with a C18 column
(5 um, 4.6 x 250 mm). The mobile phase consisted of a water-methanol mixture (60:40)
with 0.5% acetic acid, and elution was conducted at a flow rate of 1 mL-min". IAA was
detected with a UV-visible detector at 280 nm. Retention times and peak areas were
determined using standard IAA calibration curves.

Ammonia and siderophore production, surface motility, and biofilm forma-
tion

Bacterial cultures were assessed for ammonia production using Nessler’s reagent, as per
outlined by Oliva et al. (75). A mixture of 5 mL of supernatant from centrifugation of
overnight culture broth with 1 mL of Nessler’s reagent indicated NH3 production by a
color change from yellow to brown. Siderophore production was determined using CAS
medium (76). Inoculated plates were incubated at 37°C for 4 days, and the presence of an
orange-yellow halo around colonies confirmed positive siderophore production.

To assess surface motility, 2.5 uL of each strain cultured overnight (1 x 10° cells) was
spotted at the center of LB plates solidified with 0.3% and 0.7% agar. Swimming motility
and swarming motility over the surface were analyzed on separate plates (90 mm) (77).
Incubation occurred at 37°C for 24 h, with colony diameters measured at 6-h intervals.

Biofilm formation was evaluated in 96-well polystyrene microtiter plates using the
crystal violet method (78). ODsgg nm Values served as an index of biofilm formation. EPS
from strain D103 was extracted using the EDTA extraction method (79). Polysaccharides
within the EPS extracts were quantified using a modified phenol-sulfuric acid colorimet-
ric method, employing glucose as the standard (80). Protein content in the EPS extract
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was determined using the Coomassie brilliant blue staining method, with bovine serum
albumin as the standard (81). Nucleic acids were quantified using the diphenylamine
method (82).

Detection of in vitro hydrolytic activity

To assess in vitro hydrolytic activity, we investigated the production of cellulose (83),
protease (84), amylase (85), and f-1,3-glucanase (86) by strain D103, as previously
outlined. We quantified the activities of these four enzymes using the Microorganism
Cellulase ELISA Kit, Microorganism Protease ELISA Kit, Microorganism Amylase ELISA Kit,
and Microorganism (3-1,3-glucanase ELISA Kit, all provided by Jiangsu Meimian Industrial
Co., Ltd. Additionally, ACC deaminase production and enzyme activity were directly
determined using the ACC deaminase ELISA Kit from Jiangsu Meimian Industrial Co., Ltd.

In vitro antagonism assay

To assess the antagonistic effectiveness of D103 against phytopathogens, we selec-
ted five fungal pathogens: Fusarium graminearum, Athelia rolfsii, Fusarium thapsinum,
Gibberella fujikuroi, and Gibberella moniliformis. The antifungal resistance of D103 was
determined through a triple-replicated dual culture experiment (23). In this experimental
setup, strain D103 and each pathogen were simultaneously cultured on 9-cm potato
dextrose agar plates, with 8-mm plugs of the pathogen positioned 3.5 cm apart. The
plates were then incubated at 28°C for duration of 4 days.

DNA extraction

Genomic DNA extraction was performed using the cetyltrimethylammonium bromide
method (87).The DNA was subsequently assessed for concentration, quality, and integrity
using a Qubit Fluorometer (Invitrogen, USA) and a Nano Drop Spectrophotometer
(Thermo Scientific, USA).

Genome sequencing and assembly

Qualified genomic DNA was fragmented with G-tubes (Covaris, Woburn, MA, USA)
and subjected end repair to prepare SMRTbell DNA template libraries with fragment
size of>10kb using the blue pippin system, following the manufacturer’s specification
(PacBio, Menlo Park, CA, USA). The quality of the libraries was assessed using Qubit (v.2.0)
Fluorometer (Life Technologies, CA, USA), and the average fragment size was determined
with a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). SMRT sequencing was performed
on the Pacific Biosciences Sequel (PacBio) according to standard protocols.

Qualified genomic DNA was first randomly sonicated, followed by end repair,
A-tailing, and adaptor ligation using the NEBNext MLtra DNA Library Prep Kit for lllumina
(NEB, USA) in accordance with the manufacturer’s protocol. DNA fragments ranging
from 300 to 400 bp were selectively enriched by PCR. The PCR products were subse-
quently purified with the AMPure XP system (Beckman Coulter, Brea, CA, USA). Library
size distribution was assessed using a 2100 Bioanalyzer (Agilent), and concentration
was determined by real-time PCR. Genome sequencing was performed on the Illumina
Novaseq 6000 sequencer utilizing paired-end technology (PE 150).

Continuous long reads obtained from SMRT sequencing were utilized for de novo
assembly using Falcon (v.0.3.0) (88). Raw data from lllumina platform were processed
with FASTP (v.0.20.0) (89) by applying the following standards: (i) reads containing >10%
unidentified nucleotides (N) were discarded; (ii) reads with >50% bases having phred
quality scores of <20 were excluded; and (iii) reads aligned to the barcode adapter were
removed. Following filtration, the resulting clean reads were employed to refine the
genome assembly and enhance accuracy. The final genome sequences were determined
using Pilon (v.1.23) (90) to correct errors and ensure high-quality assembly.
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Genome component prediction

Open reading frames were predicted using the NCBI prokaryotic genome annotation
pipeline (91). rRNAs were identified using rRNAmmer (v.1.2) (92), while tRNAs were
detected with tRNAscan (v.1.3.1) (93). Small RNAs (sRNAs) were identified with cmscan
(v.1.1.2) (94).

Genome composition prediction and annotation

The genome was functionally annotated using several databases, including the Non-
redundant Protein Database, GO, KEGG, COG, and Swissprot. To provide a comprehensive
overview of the genomic data, CGview (version 2.0.2) (95) was utilized.

Analysis of average nucleotide identity

The ANI of the D103 genome was compared with 41 sequenced Bacillus strain genomes
FastANI tool (v.1.1) (96). Clustering was performed using bactaxR (v.3.6.1) package in R
(97). The phylogenetic tree was generated with ggtree (v.1.16.6) (98), and a heat map was
produced using TBtools-Il (v.21.0.3) (99). A total of 41 Bacillus reference whole-genome
sequences were obtained from GenBank for this analysis.

Comparative genomics

In the comparative genomics analysis, four Bacillus strains (Bacillus velezensis FZB42,
Bacillus velezensis ENO1, Bacillus subtilis 168, and Bacillus amyloliquefaciens X030) served
as reference strains. Genomic characterization utilized NCBI annotated data. Gene
families derived from protein sequences of both reference and target bacteria were
analyzed using orthoMCL software (v.2.0.8) , resulting in Venn diagrams (100). Genomic
comparisons of the five Bacillus strains employed Mauve software (v.2.3.1) (101).
Genomic islands were identified using the Island Viewer four online platform, while
prophages were predicted with the PHASTER online tool (http://phaster.ca/).

Carbohydrate-active enzyme identification

To identify genes encoding CAZymes in the D103 genome, the dbCAN3 database (http://
bcb.unl.edu/dbCAN2/) was utilized. This analysis detected various CAZyme categories,
including GH, PL, CE, GT, AA, and CBM (102).

Secondary metabolite analysis

To analyze secondary metabolites and identify biosynthetic gene clusters associated
with the production of antimicrobial compounds from various chemical classes, the
antiSMASH online tool (https://antismash.secondarymetabolites.org) was employed.

Functional gene analysis related to plant growth promotion

The D103 genome was investigated for genes associated with PGP, including those
involved in mineral assimilation, IAA synthesis, bacterial chemotaxis, flagellar assembly,
and biofilm formation. The sequences identified were compared with the reference
sequences in GenBank to validate their accuracy. The PGP-related genes from the D103
genome were compared at the amino acid level with those in the genomes of Bacillus
strains: FZB42, ENO1, 168, and X030 using the NCBI database.

Growth-promoting capacity of D103 on maize

To assess the growth-promoting capabilities of D103 on maize, a bacterial suspension
was prepared by incubating D103 for 12 h, resulting in an optical density of OD5gg nm = 1
(1 x 108 CFU-mL™). The suspension was serially diluted with sterile water to achieve final
concentrations of 105, 10° 10% 10°, 10% and 10 CFU-mL™". Maize seeds were sterilized in
75% ethanol for 2 min followed by 1% sodium hypochlorite for 10 min, and subsequently
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washed four to five times with sterile water. These seeds were soaked in the different
concentrations of bacterial suspensions for 12 h, placed on filter paper in petri dishes
with a small amount of distilled water, and allowed to germinate for 3-5 days in the
dark at 24°C. Control seeds treated with sterile water were included, and each treatment
consisted of three replicates of 10 plants each. Germinated seeds were transferred to the
Hoagland hydroponic cultivation system, containing the respective concentrations of the
bacterial suspension. The hydroponic solution was replaced every 2 days. All samples
were incubated in an artificial climate room mimicking natural maize growing conditions
(18°C at night, 24°C during the day, and 65% relative humidity).

After 2 weeks, several parameters were assessed and recorded to evaluate maize
seedling growth. These parameters included aerial length, aerial dry weight, and root dry
weight. Additional metrics such as root length, root volume, and root surface area were
measured using the Root System Analyzer (WinRHIZO, Regent Instruments Inc., Canada).
The total leaf area was determined with the Portable Area Meter Model LI-3000C (Li-Cor,
Lincoln, NE, USA).

Statistical analysis

Statistical comparisons among treatments were performed using one-way analysis of
variance in GraphPad Prism 9 (v.9.5.1). The Shapiro-Wilk test was utilized to evaluate the
normality of the data. Results are expressed as the mean + standard deviation from three
independent replicates. Statistical significance was defined as P < 0.05.
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